Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > HAMED HATAMI:
All reports by Author Hamed Hatami:

TR24-205 | 17th December 2024
Tsun-Ming Cheung, Hamed Hatami, Kaave Hosseini, Aleksandar Nikolov, Toniann Pitassi, Morgan Shirley

A Lower Bound on the Trace Norm of Boolean Matrices and its Applications

We present a simple method based on a variant of Hölder's inequality to lower-bound the trace norm of Boolean matrices. As the main result, we obtain an exponential separation between the randomized decision tree depth and the spectral norm (i.e. the Fourier $L_1$-norm) of a Boolean function. This answers an ... more >>>


TR24-012 | 26th January 2024
Hamed Hatami, Pooya Hatami

Structure in Communication Complexity and Constant-Cost Complexity Classes

Several theorems and conjectures in communication complexity state or speculate that the complexity of a matrix in a given communication model is controlled by a related analytic or algebraic matrix parameter, e.g., rank, sign-rank, discrepancy, etc. The forward direction is typically easy as the structural implications of small complexity often ... more >>>


TR23-203 | 15th December 2023
Hamed Hatami, Kaave Hosseini, Shachar Lovett, Anthony Ostuni

Refuting approaches to the log-rank conjecture for XOR functions

The log-rank conjecture, a longstanding problem in communication complexity, has persistently eluded resolution for decades. Consequently, some recent efforts have focused on potential approaches for establishing the conjecture in the special case of XOR functions, where the communication matrix is lifted from a boolean function, and the rank of ... more >>>


TR23-050 | 18th April 2023
Manasseh Ahmed, Tsun-Ming Cheung, Hamed Hatami, Kusha Sareen

Communication complexity of half-plane membership

Revisions: 1

We study the randomized communication complexity of the following problem. Alice receives the integer coordinates of a point in the plane, and Bob receives the integer parameters of a half-plane, and their goal is to determine whether Alice's point belongs to Bob's half-plane.

This communication task corresponds to determining ... more >>>


TR22-165 | 22nd November 2022
Tsun-Ming Cheung, Hamed Hatami, Kaave Hosseini, Morgan Shirley

Separation of the factorization norm and randomized communication complexity

In an influential paper, Linial and Shraibman (STOC '07) introduced the factorization norm as a powerful tool for proving lower bounds against randomized and quantum communication complexities. They showed that the logarithm of the approximate $\gamma_2$-factorization norm is a lower bound for these parameters and asked whether a stronger ... more >>>


TR22-130 | 15th September 2022
Hamed Hatami, Kaave Hosseini, Xiang Meng

A Borsuk-Ulam lower bound for sign-rank and its application

We introduce a new topological argument based on the Borsuk-Ulam theorem to prove a lower bound on sign-rank.

This result implies the strongest possible separation between randomized and unbounded-error communication complexity. More precisely, we show that for a particular range of parameters, the randomized communication complexity of ... more >>>


TR22-079 | 25th May 2022
Hamed Hatami, Pooya Hatami, William Pires, Ran Tao, Rosie Zhao

Lower Bound Methods for Sign-rank and their Limitations

The sign-rank of a matrix $A$ with $\pm 1$ entries is the smallest rank of a real matrix with the same sign pattern as $A$. To the best of our knowledge, there are only three known methods for proving lower bounds on the sign-rank of explicit matrices: (i) Sign-rank is ... more >>>


TR22-041 | 23rd March 2022
Tsun-Ming Cheung, Hamed Hatami, Rosie Zhao, Itai Zilberstein

Boolean functions with small approximate spectral norm

The sum of the absolute values of the Fourier coefficients of a function $f:\mathbb{F}_2^n \to \mathbb{R}$ is called the spectral norm of $f$. Green and Sanders' quantitative version of Cohen's idempotent theorem states that if the spectral norm of $f:\mathbb{F}_2^n \to \{0,1\}$ is at most $M$, then the support of ... more >>>


TR21-123 | 25th August 2021
Ben Davis, Hamed Hatami, William Pires, Ran Tao, Hamza Usmani

On public-coin zero-error randomized communication complexity

Revisions: 2

We prove that for every Boolean function, the public-coin zero-error randomized communication complexity and the deterministic communication complexity are polynomially equivalent.

more >>>

TR21-066 | 5th May 2021
Lianna Hambardzumyan, Hamed Hatami, Pooya Hatami

Dimension-free Bounds and Structural Results in Communication Complexity

The purpose of this article is to initiate a systematic study of dimension-free relations between basic communication and query complexity measures and various matrix norms. In other words, our goal is to obtain inequalities that bound a parameter solely as a function of another parameter. This is in contrast to ... more >>>


TR19-067 | 6th May 2019
Hamed Hatami, Kaave Hosseini, Shachar Lovett

Sign rank vs Discrepancy

Revisions: 1

Sign-rank and discrepancy are two central notions in communication complexity. The seminal work of Babai, Frankl, and Simon from 1986 initiated an active line of research that investigates the gap between these two notions.
In this article, we establish the strongest possible separation by constructing a Boolean matrix whose sign-rank ... more >>>


TR19-029 | 20th February 2019
Yuval Filmus, Lianna Hambardzumyan, Hamed Hatami, Pooya Hatami, David Zuckerman

Biasing Boolean Functions and Collective Coin-Flipping Protocols over Arbitrary Product Distributions

The seminal result of Kahn, Kalai and Linial shows that a coalition of $O(\frac{n}{\log n})$ players can bias the outcome of *any* Boolean function $\{0,1\}^n \to \{0,1\}$ with respect to the uniform measure. We extend their result to arbitrary product measures on $\{0,1\}^n$, by combining their argument with a completely ... more >>>


TR16-190 | 21st November 2016
Yuval Dagan, Yuval Filmus, Hamed Hatami, Yaqiao Li

Trading information complexity for error

We consider the standard two-party communication model. The central problem studied in this article is how much one can save in information complexity by allowing an error of $\epsilon$.
For arbitrary functions, we obtain lower bounds and upper bounds indicating a gain that is of order $\Omega(h(\epsilon))$ and $O(h(\sqrt{\epsilon}))$. ... more >>>




ISSN 1433-8092 | Imprint