Given a distribution over $[n]^n$ such that any $k$ coordinates need $k/\log^{O(1)}n$ bits of communication to sample, we prove that any map that samples this distribution from uniform cells requires locality $\Omega(\log(n/k)/\log\log(n/k))$. In particular, we show that for any constant $\delta>0$, there exists $\varepsilon=2^{-\Omega(n^{1-\delta})}$ such that $\Omega(\log n/\log\log n)$ non-adaptive ... more >>>
We prove the first polynomial separation between randomized and deterministic time-space tradeoffs of multi-output functions. In particular, we present a total function that on the input of $n$ elements in $[n]$, outputs $O(n)$ elements, such that:
- There exists a randomized oblivious algorithm with space $O(\log n)$, time $O(n\log n)$ ... more >>>
We study boolean constraint satisfaction problems (CSPs) $\mathrm{Max}\text{-}\mathrm{CSP}^f_n$ for all predicates $f: \{ 0, 1 \} ^k \to \{ 0, 1 \}$. In these problems, given an integer $v$ and a list of constraints over $n$ boolean variables, each obtained by applying $f$ to a sequence of literals, we wish ... more >>>
We consider the Max-Cut problem, asking how much space is needed by a streaming algorithm in order to estimate the value of the maximum cut in a graph. This problem has been extensively studied over the last decade, and we now have a near-optimal lower bound for one-pass streaming algorithms, ... more >>>
In this paper, we prove a strong XOR lemma for bounded-round two-player randomized communication. For a function $f:\mathcal{X}\times \mathcal{Y}\rightarrow\{0,1\}$, the $n$-fold XOR function $f^{\oplus n}:\mathcal{X}^n\times \mathcal{Y}^n\rightarrow\{0,1\}$ maps $n$ input pairs $(X_1,\ldots,X_n,Y_1,\ldots,Y_n)$ to the XOR of the $n$ output bits $f(X_1,Y_1)\oplus \cdots \oplus f(X_n, Y_n)$. We prove that if every ... more >>>
We give an almost quadratic $n^{2-o(1)}$ lower bound on the space consumption of any $o(\sqrt{\log n})$-pass streaming algorithm solving the (directed) $s$-$t$ reachability problem. This means that any such algorithm must essentially store the entire graph. As corollaries, we obtain almost quadratic space lower bounds for additional fundamental problems, including ... more >>>
We show optimal lower bounds for spanning forest computation in two different models:
* One wants a data structure for fully dynamic spanning forest in which updates can insert or delete edges amongst a base set of $n$ vertices. The sole allowed query asks for a spanning forest, which the ... more >>>
In this work, we introduce an online model for communication complexity. Analogous to how online algorithms receive their input piece-by-piece, our model presents one of the players Bob his input piece-by-piece, and has the players Alice and Bob cooperate to compute a result it presents Bob with the next piece. ... more >>>
This paper proves the first super-logarithmic lower bounds on the cell probe complexity of dynamic \emph{boolean} (a.k.a. decision) data structure problems, a long-standing milestone in data structure lower bounds.
We introduce a new method for proving dynamic cell probe lower bounds and use it to prove a $\tilde{\Omega}(\log^{1.5} ...
more >>>
This paper develops a new technique for proving amortized, randomized cell-probe lower bounds on dynamic
data structure problems. We introduce a new randomized nondeterministic four-party communication model
that enables "accelerated", error-preserving simulations of dynamic data structures.
We use this technique to prove an $\Omega(n\left(\log n/\log\log n\right)^2)$ cell-probe ... more >>>