We give a nearly-optimal algorithm for testing uniformity of distributions supported on $\{-1,1\}^n$, which makes $\tilde O (\sqrt{n}/\varepsilon^2)$ queries to a subcube conditional sampling oracle (Bhattacharyya and Chakraborty (2018)). The key technical component is a natural notion of random restriction for distributions on $\{-1,1\}^n$, and a quantitative analysis of how ... more >>>
We design a nonadaptive algorithm that, given a Boolean function $f\colon \{0,1\}^n \to \{0,1\}$ which is $\alpha$-far from monotone, makes poly$(n, 1/\alpha)$ queries and returns an estimate that, with high probability, is an $\widetilde{O}(\sqrt{n})$-approximation to the distance of $f$ to monotonicity. Furthermore, we show that for any constant $\kappa > ... more >>>
We study the problem of finding monotone subsequences in an array from the viewpoint of sublinear algorithms. For fixed $k \in \mathbb{N}$ and $\varepsilon > 0$, we show that the non-adaptive query complexity of finding a length-$k$ monotone subsequence of $f \colon [n] \to \mathbb{R}$, assuming that $f$ is $\varepsilon$-far ... more >>>
We introduce a new model for testing graph properties which we call the \emph{rejection sampling model}. We show that testing bipartiteness of $n$-nodes graphs using rejection sampling queries requires complexity $\widetilde{\Omega}(n^2)$. Via reductions from the rejection sampling model, we give three new lower bounds for tolerant testing of Boolean functions ... more >>>
We prove that any non-adaptive algorithm that tests whether an unknown
Boolean function $f\colon \{0, 1\}^n\to\{0, 1\} $ is a $k$-junta or $\epsilon$-far from every $k$-junta must make $\widetilde{\Omega}(k^{3/2} / \epsilon)$ many queries for a wide range of parameters $k$ and $\epsilon$. Our result dramatically improves previous lower ...
more >>>