Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > PRANJAL DUTTA:
All reports by Author Pranjal Dutta:

TR24-197 | 29th November 2024
Pranjal Dutta, Amit Sinhababu, Thomas Thierauf

Derandomizing Multivariate Polynomial Factoring for Low Degree Factors

For a polynomial $f$ from a class $\mathcal{C}$ of polynomials, we show that the problem to compute all the constant degree irreducible factors of $f$ reduces in polynomial time to polynomial identity tests (PIT) for class $\mathcal{C}$ and divisibility tests of $f$ by constant degree polynomials. We apply the result ... more >>>


TR24-061 | 5th April 2024
Divesh Aggarwal, Pranjal Dutta, Zeyong Li, Maciej Obremski, Sidhant Saraogi

Improved Lower Bounds for 3-Query Matching Vector Codes

Revisions: 1

A Matching Vector ($\mathbf{MV}$) family modulo a positive integer $m \ge 2$ is a pair of ordered lists $\mathcal{U} = (\mathbf{u}_1, \cdots, \mathbf{u}_K)$ and $\mathcal{V} = (\mathbf{v}_1, \cdots, \mathbf{v}_K)$ where $\mathbf{u}_i, \mathbf{v}_j \in \mathbb{Z}_m^n$ with the following property: for any $i \in [K]$, the inner product $\langle \mathbf{u}_i, \mathbf{v}_i \rangle ... more >>>


TR22-157 | 16th November 2022
Pranjal Dutta, Fulvio Gesmundo, Christian Ikenmeyer, Gorav Jindal, Vladimir Lysikov

Border complexity via elementary symmetric polynomials

Revisions: 1

In (ToCT’20) Kumar surprisingly proved that every polynomial can be approximated as a sum of a constant and a product of linear polynomials. In this work, we prove the converse of Kumar's result which ramifies in a surprising new formulation of Waring rank and border Waring rank. From this conclusion, ... more >>>


TR21-072 | 23rd May 2021
Pranjal Dutta, Gorav Jindal, Anurag Pandey, Amit Sinhababu

Arithmetic Circuit Complexity of Division and Truncation

Given polynomials $f,g,h\,\in \mathbb{F}[x_1,\ldots,x_n]$ such that $f=g/h$, where both $g$ and $h$ are computable by arithmetic circuits of size $s$, we show that $f$ can be computed by a circuit of size $\poly(s,\deg(h))$. This solves a special case of division elimination for high-degree circuits (Kaltofen'87 \& WACT'16). The result ... more >>>




ISSN 1433-8092 | Imprint