Determinantal Point Processes (DPPs) are a widely used probabilistic model for negatively correlated sets. DPPs have been successfully employed in Machine Learning applications to select a diverse, yet representative subset of data. In these applications, the parameters of the DPP need to be fitted to match the data; typically, we ... more >>>
We continue the study of $k$-monotone Boolean functions in the property testing model, initiated by Canonne et al. (ITCS 2017). A function $f:\{0,1\}^n\rightarrow \{0,1\}$ is said to be $k$-monotone if it alternates between $0$ and $1$ at most $k$ times on every ascending chain. Such functions represent a natural generalization ... more >>>
Establishing the complexity of {\em Bounded Distance Decoding} for Reed-Solomon codes is a fundamental open problem in coding theory, explicitly asked by Guruswami and Vardy (IEEE Trans. Inf. Theory, 2005). The problem is motivated by the large current gap between the regime when it is NP-hard, and the regime when ... more >>>
A Boolean $k$-monotone function defined over a finite poset domain ${\cal D}$ alternates between the values $0$ and $1$ at most $k$ times on any ascending chain in ${\cal D}$. Therefore, $k$-monotone functions are natural generalizations of the classical monotone functions, which are the $1$-monotone functions.
Motivated by the ... more >>>
Motivated by the structural analogies between point lattices and linear error-correcting codes, and by the mature theory on locally testable codes, we initiate a systematic study of local testing for membership in lattices. Testing membership in lattices is also motivated in practice, by applications to integer programming, error detection in ... more >>>
We develop a framework for proving lower bounds on computational problems over distributions, including optimization and unsupervised learning. Our framework is based on defining a restricted class of algorithms, called statistical algorithms, that instead of accessing samples from the input distribution can only obtain an estimate of the expectation ... more >>>