We prove that any subset $A \subseteq [3]^n$ with $3^{-n}|A| \ge (\log\log\log\log n)^{-c}$ contains a combinatorial line of length $3$, i.e., $x, y, z \in A$, not all equal, with $x_i=y_i=z_i$ or $(x_i,y_i,z_i)=(0,1,2)$ for all $i = 1, 2, \dots, n$. This improves on the previous best bound of $3^{-n}|A| ... more >>>
Let $\Sigma_1,\ldots,\Sigma_k$ be finite alphabets, and let $\mu$ be a distribution over $\Sigma_1 \times \dots \times \Sigma_k$ in which the probability of each atom is at least $\alpha$. We prove that if $\mu$ does not admit Abelian embeddings, and $f_i: \Sigma_i \to \mathbb{C}$ are $1$-bounded functions (for $i=1,\ldots,k$) such that ... more >>>
We prove local and global inverse theorems for general $3$-wise correlations over pairwise-connected distributions. Let $\mu$ be a distribution over $\Sigma \times \Gamma \times \Phi$ such that the supports of $\mu_{xy}$, $\mu_{xz}$, and $\mu_{yz}$ are all connected, and let $f: \Sigma^n \to \mathbb{C}$, $g: \Gamma^n \to \mathbb{C}$, $h: \Phi^n \to ... more >>>
We propose a framework of algorithm vs. hardness for all Max-CSPs and demonstrate it for a large class of predicates. This framework extends the work of Raghavendra [STOC, 2008], who showed a similar result for almost satisfiable Max-CSPs.
Our framework is based on a new hybrid approximation algorithm, which uses ... more >>>
We show that for all $\varepsilon>0$, for sufficiently large prime power $q\in\mathbb{N}$, for all $\delta>0$, it is NP-hard to distinguish whether a $2$-Prover-$1$-Round projection game with alphabet size $q$ has value at least $1-\delta$, or value at most $1/q^{1-\varepsilon}$. This establishes a nearly optimal alphabet-to-soundness tradeoff for $2$-query PCPs ... more >>>
We study parallel repetition of k-player games where the constraints satisfy the projection property. We prove exponential decay in the value of a parallel repetition of projection games with value less than 1.
more >>>If $G$ is a group, we say a subset $S$ of $G$ is product-free if the equation $xy=z$ has no solutions with $x,y,z \in S$. For $D \in \mathbb{N}$, a group $G$ is said to be $D$-quasirandom if the minimal dimension of a nontrivial complex irreducible representation of $G$ is ... more >>>
For a prime $p$, a restricted arithmetic progression in $\mathbb{F}_p^n$ is a triplet of vectors $x, x+a, x+2a$ in which the common difference $a$ is a non-zero element from $\{0,1,2\}^n$. What is the size of the largest $A\subseteq \mathbb{F}_p^n$ that is free of restricted arithmetic progressions? We show that the ... more >>>
We prove a stability result for general $3$-wise correlations over distributions satisfying mild connectivity properties. More concretely, we show that if $\Sigma,\Gamma$ and $\Phi$ are alphabets of constant size, and $\mu$ is a pairwise connected distribution over $\Sigma\times\Gamma\times\Phi$ with no $(\mathbb{Z},+)$ embeddings in which the probability of each atom is ... more >>>
Let $\Sigma$ be an alphabet and $\mu$ be a distribution on $\Sigma^k$ for some $k \geq 2$. Let $\alpha > 0$ be the minimum probability of a tuple in the support of $\mu$ (denoted by $supp(\mu)$). Here, the support of $\mu$ is the set of all tuples in $\Sigma^k$ that ... more >>>
In this paper we study functions on the Boolean hypercube that have the property that after applying certain random restrictions, the restricted function is correlated to a linear function with non-negligible probability. If the given function is correlated with a linear function then this property clearly holds. Furthermore, the property ... more >>>
We show that the value of the $n$-fold repeated GHZ game is at most $2^{-\Omega(n)}$, improving upon the polynomial bound established by Holmgren and Raz. Our result is established via a reduction to approximate subgroup type questions from additive combinatorics.
more >>>We consider the $P$-CSP problem for $3$-ary predicates $P$ on satisfiable instances. We show that under certain conditions on $P$ and a $(1,s)$ integrality gap instance of the $P$-CSP problem, it can be translated into a dictatorship vs. quasirandomness test with perfect completeness and soundness $s+\varepsilon$, for every constant $\varepsilon>0$. ... more >>>
Cohen, Peri and Ta-Shma (STOC'21) considered the following question: Assume the vertices of an expander graph are labelled by $\pm 1$. What "test" functions $f : \{\pm 1\}^t \to \{\pm1 \}$ can or cannot distinguish $t$ independent samples from those obtained by a random walk? [CPTS'21] considered only balanced labelling, ... more >>>
We give alternate proofs for three related results in analysis of Boolean functions, namely the KKL
Theorem, Friedgut’s Junta Theorem, and Talagrand’s strengthening of the KKL Theorem. We follow a
new approach: looking at the first Fourier level of the function after a suitable random restriction and
applying the Log-Sobolev ...
more >>>
We propose a variant of the $2$-to-$1$ Games Conjecture that we call the Rich $2$-to-$1$ Games Conjecture and show that it is equivalent to the Unique Games Conjecture. We are motivated by two considerations. Firstly, in light of the recent proof of the $2$-to-$1$ Games Conjecture, we hope to understand ... more >>>
This paper studies expansion properties of the (generalized) Johnson Graph. For natural numbers
t < l < k, the nodes of the graph are sets of size l in a universe of size k. Two sets are connected if
their intersection is of size t. The Johnson graph arises often ...
more >>>
We prove that pseudorandom sets in Grassmann graph have near-perfect expansion as hypothesized in [DKKMS-2]. This completes
the proof of the $2$-to-$2$ Games Conjecture (albeit with imperfect completeness) as proposed in [KMS, DKKMS-1], along with a
contribution from [BKT].
The Grassmann graph $Gr_{global}$ contains induced subgraphs $Gr_{local}$ that are themselves ... more >>>
The paper investigates expansion properties of the Grassmann graph,
motivated by recent results of [KMS, DKKMS] concerning hardness
of the Vertex-Cover and of the $2$-to-$1$ Games problems. Proving the
hypotheses put forward by these papers seems to first require a better
understanding of these expansion properties.
We consider the edge ... more >>>
We propose a combinatorial hypothesis regarding a subspace vs. subspace agreement test, and prove that if correct it leads to a proof of the 2-to-1 Games Conjecture, albeit with imperfect completeness.
We show a directed and robust analogue of a boolean isoperimetric type theorem of Talagrand. As an application, we
give a monotonicity testing algorithm that makes $\tilde{O}(\sqrt{n}/\epsilon^2)$ non-adaptive queries to a function
$f:\{0,1\}^n \mapsto \{0,1\}$, always accepts a monotone function and rejects a function that is $\epsilon$-far from
being monotone ...
more >>>