We give alternate proofs for three related results in analysis of Boolean functions, namely the KKL
Theorem, Friedgut’s Junta Theorem, and Talagrand’s strengthening of the KKL Theorem. We follow a
new approach: looking at the first Fourier level of the function after a suitable random restriction and
applying the Log-Sobolev ...
more >>>
We propose a variant of the $2$-to-$1$ Games Conjecture that we call the Rich $2$-to-$1$ Games Conjecture and show that it is equivalent to the Unique Games Conjecture. We are motivated by two considerations. Firstly, in light of the recent proof of the $2$-to-$1$ Games Conjecture, we hope to understand ... more >>>
This paper studies expansion properties of the (generalized) Johnson Graph. For natural numbers
t < l < k, the nodes of the graph are sets of size l in a universe of size k. Two sets are connected if
their intersection is of size t. The Johnson graph arises often ...
more >>>
We prove that pseudorandom sets in Grassmann graph have near-perfect expansion as hypothesized in [DKKMS-2]. This completes
the proof of the $2$-to-$2$ Games Conjecture (albeit with imperfect completeness) as proposed in [KMS, DKKMS-1], along with a
contribution from [BKT].
The Grassmann graph $Gr_{global}$ contains induced subgraphs $Gr_{local}$ that are themselves ... more >>>
The paper investigates expansion properties of the Grassmann graph,
motivated by recent results of [KMS, DKKMS] concerning hardness
of the Vertex-Cover and of the $2$-to-$1$ Games problems. Proving the
hypotheses put forward by these papers seems to first require a better
understanding of these expansion properties.
We consider the edge ... more >>>
We propose a combinatorial hypothesis regarding a subspace vs. subspace agreement test, and prove that if correct it leads to a proof of the 2-to-1 Games Conjecture, albeit with imperfect completeness.
We show a directed and robust analogue of a boolean isoperimetric type theorem of Talagrand. As an application, we
give a monotonicity testing algorithm that makes $\tilde{O}(\sqrt{n}/\epsilon^2)$ non-adaptive queries to a function
$f:\{0,1\}^n \mapsto \{0,1\}$, always accepts a monotone function and rejects a function that is $\epsilon$-far from
being monotone ...
more >>>