Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > SRIJITA KUNDU:
All reports by Author Srijita Kundu:

TR21-078 | 8th June 2021
Rahul Jain, Srijita Kundu

A direct product theorem for quantum communication complexity with applications to device-independent QKD

We give a direct product theorem for the entanglement-assisted interactive quantum communication complexity of an $l$-player predicate $V$. In particular we show that for a distribution $p$ that is product across the input sets of the $l$ players, the success probability of any entanglement-assisted quantum communication protocol for computing $n$ ... more >>>


TR20-131 | 20th August 2020
Rahul Jain, Srijita Kundu

A Direct Product Theorem for One-Way Quantum Communication

We prove a direct product theorem for the one-way entanglement-assisted quantum communication complexity of a general relation $f\subseteq\mathcal{X}\times\mathcal{Y}\times\mathcal{Z}$. For any $\varepsilon, \zeta > 0$ and any $k\geq1$, we show that
\[ \mathrm{Q}^1_{1-(1-\varepsilon)^{\Omega(\zeta^6k/\log|\mathcal{Z}|)}}(f^k) = \Omega\left(k\left(\zeta^5\cdot\mathrm{Q}^1_{\varepsilon + 12\zeta}(f) - \log\log(1/\zeta)\right)\right),\]
where $\mathrm{Q}^1_{\varepsilon}(f)$ represents the one-way entanglement-assisted quantum communication complexity of $f$ with ... more >>>


TR17-123 | 2nd August 2017
Dmytro Gavinsky, Rahul Jain, Hartmut Klauck, Srijita Kundu, Troy Lee, Miklos Santha, Swagato Sanyal, Jevgenijs Vihrovs

Quadratically Tight Relations for Randomized Query Complexity

Let $f:\{0,1\}^n \rightarrow \{0,1\}$ be a Boolean function. The certificate complexity $C(f)$ is a complexity measure that is quadratically tight for the zero-error randomized query complexity $R_0(f)$: $C(f) \leq R_0(f) \leq C(f)^2$. In this paper we study a new complexity measure that we call expectational certificate complexity $EC(f)$, which is ... more >>>


TR17-107 | 1st June 2017
Anurag Anshu, Dmytro Gavinsky, Rahul Jain, Srijita Kundu, Troy Lee, Priyanka Mukhopadhyay, Miklos Santha, Swagato Sanyal

A Composition Theorem for Randomized Query complexity

Revisions: 1

Let the randomized query complexity of a relation for error probability $\epsilon$ be denoted by $\R_\epsilon(\cdot)$. We prove that for any relation $f \subseteq \{0,1\}^n \times \mathcal{R}$ and Boolean function $g:\{0,1\}^m \rightarrow \{0,1\}$, $\R_{1/3}(f\circ g^n) = \Omega(\R_{4/9}(f)\cdot\R_{1/2-1/n^4}(g))$, where $f \circ g^n$ is the relation obtained by composing $f$ and $g$. ... more >>>


TR17-054 | 22nd March 2017
Anurag Anshu, Naresh Goud, Rahul Jain, Srijita Kundu, Priyanka Mukhopadhyay

Lifting randomized query complexity to randomized communication complexity

Revisions: 4

We show that for any (partial) query function $f:\{0,1\}^n\rightarrow \{0,1\}$, the randomized communication complexity of $f$ composed with $\mathrm{Index}^n_m$ (with $m= \poly(n)$) is at least the randomized query complexity of $f$ times $\log n$. Here $\mathrm{Index}_m : [m] \times \{0,1\}^m \rightarrow \{0,1\}$ is defined as $\mathrm{Index}_m(x,y)= y_x$ (the $x$th bit ... more >>>




ISSN 1433-8092 | Imprint