Recently Hrubes and Yehudayoff (2021) showed a connection between the monotone algebraic circuit complexity of \emph{transparent} polynomials and a geometric complexity measure of their Newton polytope. They then used this connection to prove lower bounds against monotone VP (mVP). We extend their work by showing that their technique can be ... more >>>
The motivating question for this work is a long standing open problem, posed by Nisan (1991), regarding the relative powers of algebraic branching programs (ABPs) and formulas in the non-commutative setting. Even though the general question continues to remain open, we make some progress towards its resolution. To that effect, ... more >>>
For every constant c > 0, we show that there is a family {P_{N,c}} of polynomials whose degree and algebraic circuit complexity are polynomially bounded in the number of variables, and that satisfies the following properties:
* For every family {f_n} of polynomials in VP, where f_n is an n ...
more >>>
We show that any Algebraic Branching Program (ABP) computing the polynomial $\sum_{i = 1}^n x_i^n$ has at least $\Omega(n^2)$ vertices. This improves upon the lower bound of $\Omega(n\log n)$, which follows from the classical result of Baur and Strassen [Str73, BS83], and extends the results by Kumar [Kum19], which showed ... more >>>
We study the question of algebraic rank or transcendence degree preserving homomorphisms over finite fields. This concept was first introduced by Beecken, Mittmann and Saxena (Information and Computing, 2013), and exploited by them, and Agrawal, Saha, Saptharishi and Saxena (Journal of Computing, 2016) to design algebraic independence based identity tests ... more >>>