Assuming that the Permanent polynomial requires algebraic circuits of exponential size, we show that the class VNP *does not* have efficiently computable equations. In other words, any nonzero polynomial that vanishes on the coefficient vectors of all polynomials in the class VNP requires algebraic circuits of super-polynomial size.
In a ... more >>>
For every constant c > 0, we show that there is a family {P_{N,c}} of polynomials whose degree and algebraic circuit complexity are polynomially bounded in the number of variables, and that satisfies the following properties:
* For every family {f_n} of polynomials in VP, where f_n is an n ...
more >>>
The classical lemma of Ore-DeMillo-Lipton-Schwartz-Zippel states that any nonzero polynomial $f(x_1,\ldots, x_n)$ of degree at most $s$ will evaluate to a nonzero value at some point on a grid $S^n \subseteq \mathbb{F}^n$ with $|S| > s$. Thus, there is a deterministic polynomial identity test (PIT) for all degree-$s$ size-$s$ ... more >>>
We study the class of non-commutative Unambiguous circuits or Unique-Parse-Tree (UPT) circuits, and a related model of Few-Parse-Trees (FewPT) circuits (which were recently introduced by Lagarde, Malod and Perifel [LMP16] and Lagarde, Limaye and Srinivasan [LLS17]) and give the following constructions:
• An explicit hitting set of quasipolynomial size for ...
more >>>