We investigate sublinear-time algorithms that take partially erased graphs represented by adjacency lists as input. Our algorithms make degree and neighbor queries to the input graph and work with a specified fraction of adversarial erasures in adjacency entries. We focus on two computational tasks: testing if a graph is connected ... more >>>
We give a nearly-optimal algorithm for testing uniformity of distributions supported on $\{-1,1\}^n$, which makes $\tilde O (\sqrt{n}/\varepsilon^2)$ queries to a subcube conditional sampling oracle (Bhattacharyya and Chakraborty (2018)). The key technical component is a natural notion of random restriction for distributions on $\{-1,1\}^n$, and a quantitative analysis of how ... more >>>
We introduce a new model for testing graph properties which we call the \emph{rejection sampling model}. We show that testing bipartiteness of $n$-nodes graphs using rejection sampling queries requires complexity $\widetilde{\Omega}(n^2)$. Via reductions from the rejection sampling model, we give three new lower bounds for tolerant testing of Boolean functions ... more >>>