We show that there is a family of monotone multilinear polynomials over $n$ variables in VP, such that any monotone arithmetic circuit for it would be of size $2^{\Omega(n)}$. Before our result, strongly exponential lower bounds on the size of monotone circuits were known only for computing explicit polynomials in ... more >>>
Valiant (1980) showed that general arithmetic circuits with negation can be exponentially more powerful than monotone ones. We give the first qualitative improvement to this classical result: we construct a family of polynomials $P_n$ in $n$ variables, each of its monomials has positive coefficient, such that $P_n$ can be computed ... more >>>
Hrubeš and Wigderson [HW14] initiated the study of
noncommutative arithmetic circuits with division computing a
noncommutative rational function in the free skew field, and
raised the question of rational identity testing. It is now known
that the problem can be solved in deterministic polynomial time in
more >>>
Let $C$ be a depth-3 $\Sigma\Pi\Sigma$ arithmetic circuit of size $s$,
computing a polynomial $f \in \mathbb{F}[x_1,\ldots, x_n]$ (where $\mathbb{F}$ = $\mathbb{Q}$ or
$\mathbb{C}$) with fan-in of product gates bounded by $d$. We give a
deterministic time $2^d \text{poly}(n,s)$ polynomial identity testing
algorithm to check whether $f \equiv 0$ or ...
more >>>
In this paper we study arithmetic computations over non-associative, and non-commutative free polynomials ring $\mathbb{F}\{x_1,x_2,\ldots,x_n\}$. Prior to this work, the non-associative arithmetic model of computation was considered by Hrubes, Wigderson, and Yehudayoff [HWY10]. They were interested in completeness and explicit lower bound results.
We focus on two main problems ... more >>>