Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > PRASAD CHAUGULE:
All reports by Author Prasad Chaugule:

TR24-021 | 29th January 2024
Prasad Chaugule, Nutan Limaye

On the closures of monotone algebraic classes and variants of the determinant

In this paper we prove the following two results.
* We show that for any $C \in {mVF, mVP, mVNP}$, $C = \overline{C}$. Here, $mVF, mVP$, and $mVNP$ are monotone variants of $VF, VP$, and $VNP$, respectively. For an algebraic complexity class $C$, $\overline{C}$ denotes the closure of $C$. ... more >>>


TR20-152 | 7th October 2020
Prasad Chaugule, Nutan Limaye, Shourya Pandey

Variants of the Determinant polynomial and VP-completeness

The determinant is a canonical VBP-complete polynomial in the algebraic complexity setting. In this work, we introduce two variants of the determinant polynomial which we call $StackDet_n(X)$ and $CountDet_n(X)$ and show that they are VP and VNP complete respectively under $p$-projections. The definitions of the polynomials are inspired by a ... more >>>


TR19-172 | 28th November 2019
Prasad Chaugule, Mrinal Kumar, Nutan Limaye, Chandra Kanta Mohapatra, Adrian She, Srikanth Srinivasan

Schur Polynomials do not have small formulas if the Determinant doesn't!

Schur Polynomials are families of symmetric polynomials that have been
classically studied in Combinatorics and Algebra alike. They play a central
role in the study of Symmetric functions, in Representation theory [Sta99], in
Schubert calculus [LM10] as well as in Enumerative combinatorics [Gas96, Sta84,
Sta99]. In recent years, they have ... more >>>


TR18-135 | 31st July 2018
Prasad Chaugule, Nutan Limaye, Aditya Varre

Variants of Homomorphism Polynomials Complete for Algebraic Complexity Classes

Revisions: 1

We present polynomial families complete for the well-studied algebraic complexity classes VF, VBP, VP, and VNP. The polynomial families are based on the homomorphism polynomials studied in the recent works of Durand et al. (2014) and Mahajan et al. (2016). We consider three different variants of graph homomorphisms, namely injective ... more >>>




ISSN 1433-8092 | Imprint