Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > DIMITRIOS MYRISIOTIS:
All reports by Author Dimitrios Myrisiotis:

TR21-009 | 1st February 2021
Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, Ilya Volkovich

One-way Functions and Partial MCSP

Revisions: 3 , Comments: 1

One-way functions (OWFs) are central objects of study in cryptography and computational complexity theory. In a seminal work, Liu and Pass (FOCS 2020) proved that the average-case hardness of computing time-bounded Kolmogorov complexity is equivalent to the existence of OWFs. It remained an open problem to establish such an equivalence ... more >>>


TR20-103 | 9th July 2020
Mahdi Cheraghchi, Shuichi Hirahara, Dimitrios Myrisiotis, Yuichi Yoshida

One-Tape Turing Machine and Branching Program Lower Bounds for MCSP

Revisions: 1

For a size parameter $s\colon\mathbb{N}\to\mathbb{N}$, the Minimum Circuit Size Problem (denoted by ${\rm MCSP}[s(n)]$) is the problem of deciding whether the minimum circuit size of a given function $f \colon \{0,1\}^n \to \{0,1\}$ (represented by a string of length $N := 2^n$) is at most a threshold $s(n)$. A ... more >>>


TR20-018 | 18th February 2020
Valentine Kabanets, Sajin Koroth, Zhenjian Lu, Dimitrios Myrisiotis, Igor Oliveira

Algorithms and Lower Bounds for de Morgan Formulas of Low-Communication Leaf Gates

The class $FORMULA[s] \circ \mathcal{G}$ consists of Boolean functions computable by size-$s$ de Morgan formulas whose leaves are any Boolean functions from a class $\mathcal{G}$. We give lower bounds and (SAT, Learning, and PRG) algorithms for $FORMULA[n^{1.99}]\circ \mathcal{G}$, for classes $\mathcal{G}$ of functions with low communication complexity. Let $R^{(k)}(\mathcal{G})$ be ... more >>>


TR19-022 | 23rd February 2019
Mahdi Cheraghchi, Valentine Kabanets, Zhenjian Lu, Dimitrios Myrisiotis

Circuit Lower Bounds for MCSP from Local Pseudorandom Generators

Revisions: 1

The Minimum Circuit Size Problem (MCSP) asks if a given truth table of a Boolean function $f$ can be computed by a Boolean circuit of size at most $\theta$, for a given parameter $\theta$. We improve several circuit lower bounds for MCSP, using pseudorandom generators (PRGs) that are local; a ... more >>>




ISSN 1433-8092 | Imprint