Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

All reports by Author William Kretschmer:

TR23-015 | 20th February 2023
Scott Aaronson, Harry Buhrman, William Kretschmer

A Qubit, a Coin, and an Advice String Walk Into a Relational Problem

Relational problems (those with many possible valid outputs) are different from decision problems, but it is easy to forget just how different. This paper initiates the study of FBQP/qpoly, the class of relational problems solvable in quantum polynomial-time with the help of polynomial-sized quantum advice, along with its analogues for ... more >>>

TR21-164 | 19th November 2021
Scott Aaronson, DeVon Ingram, William Kretschmer

The Acrobatics of BQP

Revisions: 2

We show that, in the black-box setting, the behavior of quantum polynomial-time (${BQP}$) can be remarkably decoupled from that of classical complexity classes like ${NP}$. Specifically:

-There exists an oracle relative to which ${NP}^{{BQP}}\not \subset {BQP}^{{PH}}$, resolving a 2005 problem of Fortnow. Interpreted another way, we show that ${AC^0}$ circuits ... more >>>

TR19-062 | 18th April 2019
Scott Aaronson, Robin Kothari, William Kretschmer, Justin Thaler

Quantum Lower Bounds for Approximate Counting via Laurent Polynomials

Revisions: 2

This paper proves new limitations on the power of quantum computers to solve approximate counting---that is, multiplicatively estimating the size of a nonempty set $S\subseteq [N]$.

Given only a membership oracle for $S$, it is well known that approximate counting takes $\Theta(\sqrt{N/|S|})$ quantum queries. But what if a quantum algorithm ... more >>>

TR19-015 | 7th February 2019
William Kretschmer

QMA Lower Bounds for Approximate Counting

We prove a query complexity lower bound for $QMA$ protocols that solve approximate counting: estimating the size of a set given a membership oracle. This gives rise to an oracle $A$ such that $SBP^A \not\subset QMA^A$, resolving an open problem of Aaronson [2]. Our proof uses the polynomial method to ... more >>>

ISSN 1433-8092 | Imprint