Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > RAGHU MEKA:
All reports by Author Raghu Meka:

TR23-180 | 17th November 2023
Amir Abboud, Nick Fischer, Zander Kelley, Shachar Lovett, Raghu Meka

New Graph Decompositions and Combinatorial Boolean Matrix Multiplication Algorithms

We revisit the fundamental Boolean Matrix Multiplication (BMM) problem. With the invention of algebraic fast matrix multiplication over 50 years ago, it also became known that BMM can be solved in truly subcubic $O(n^\omega)$ time, where $\omega<3$; much work has gone into bringing $\omega$ closer to $2$. Since then, a ... more >>>


TR22-148 | 11th November 2022
Peter Ivanov, Raghu Meka, Emanuele Viola

Efficient resilient functions

An $n$-bit boolean function is resilient to coalitions of size $q$
if no fixed set of $q$ bits is likely to influence the value of the
function when the other $n-q$ bits are chosen uniformly at random,
even though the function is nearly balanced. We construct explicit
functions resilient to ... more >>>


TR21-047 | 26th March 2021
Zander Kelley, Raghu Meka

Random restrictions and PRGs for PTFs in Gaussian Space

Revisions: 1

A polynomial threshold function (PTF) $f:\mathbb{R}^n \rightarrow \mathbb{R}$ is a function of the form $f(x) = sign(p(x))$ where $p$ is a polynomial of degree at most $d$. PTFs are a classical and well-studied complexity class with applications across complexity theory, learning theory, approximation theory, quantum complexity and more. We address ... more >>>


TR20-055 | 22nd April 2020
Ashutosh Kumar, Raghu Meka, David Zuckerman

Bounded Collusion Protocols, Cylinder-Intersection Extractors and Leakage-Resilient Secret Sharing

In this work we study bounded collusion protocols (BCPs) recently introduced in the context of secret sharing by Kumar, Meka, and Sahai (FOCS 2019). These are multi-party communication protocols on $n$ parties where in each round a subset of $p$-parties (the collusion bound) collude together and write a function of ... more >>>


TR19-079 | 28th May 2019
Arnab Bhattacharyya, Philips George John, Suprovat Ghoshal, Raghu Meka

Average Bias and Polynomial Sources

Revisions: 2

We identify a new notion of pseudorandomness for randomness sources, which we call the average bias. Given a distribution $Z$ over $\{0,1\}^n$, its average bias is: $b_{\text{av}}(Z) =2^{-n} \sum_{c \in \{0,1\}^n} |\mathbb{E}_{z \sim Z}(-1)^{\langle c, z\rangle}|$. A source with average bias at most $2^{-k}$ has min-entropy at least $k$, and ... more >>>


TR18-200 | 29th November 2018
Ashutosh Kumar, Raghu Meka, Amit Sahai

Leakage-Resilient Secret Sharing

In this work, we consider the natural goal of designing secret sharing schemes that ensure security against a powerful adaptive adversary who may learn some ``leaked'' information about all the shares. We say that a secret sharing scheme is $p$-party leakage-resilient, if the secret remains statistically hidden even after an ... more >>>




ISSN 1433-8092 | Imprint