All reports by Author Nicolas Resch:

__
TR19-122
| 13th September 2019
__

Jonathan Mosheiff, Nicolas Resch, Noga Ron-Zewi, Shashwat Silas, Mary Wootters#### LDPC Codes Achieve List-Decoding Capacity

__
TR19-080
| 1st June 2019
__

Swastik Kopparty, Nicolas Resch, Noga Ron-Zewi, Shubhangi Saraf, Shashwat Silas#### On List Recovery of High-Rate Tensor Codes

__
TR18-017
| 26th January 2018
__

Venkatesan Guruswami, Nicolas Resch, Chaoping Xing#### Lossless dimension expanders via linearized polynomials and subspace designs

Jonathan Mosheiff, Nicolas Resch, Noga Ron-Zewi, Shashwat Silas, Mary Wootters

We show that Gallager's ensemble of Low-Density Parity Check (LDPC) codes achieve list-decoding capacity. These are the first graph-based codes shown to have this property. Previously, the only codes known to achieve list-decoding capacity were completely random codes, random linear codes, and codes constructed by algebraic (rather than combinatorial) techniques. ... more >>>

Swastik Kopparty, Nicolas Resch, Noga Ron-Zewi, Shubhangi Saraf, Shashwat Silas

We continue the study of list recovery properties of high-rate tensor codes, initiated by Hemenway, Ron-Zewi, and Wootters (FOCS'17). In that work it was shown that the tensor product of an efficient (poly-time) high-rate globally list recoverable code is {\em approximately} locally list recoverable, as well as globally list recoverable ... more >>>

Venkatesan Guruswami, Nicolas Resch, Chaoping Xing

For a vector space $\mathbb{F}^n$ over a field $\mathbb{F}$, an $(\eta,\beta)$-dimension expander of degree $d$ is a collection of $d$ linear maps $\Gamma_j : \mathbb{F}^n \to \mathbb{F}^n$ such that for every subspace $U$ of $\mathbb{F}^n$ of dimension at most $\eta n$, the image of $U$ under all the maps, $\sum_{j=1}^d ... more >>>