Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

All reports by Author Nicolas Resch:

TR22-146 | 9th November 2022
Klim Efremenko, Bernhard Haeupler, Gillat Kol, Nicolas Resch, Raghuvansh Saxena, Yael Tauman Kalai

Interactive Coding with Small Memory

In this work, we design an interactive coding scheme that converts any two party interactive protocol $\Pi$ into another interactive protocol $\Pi'$, such that even if errors are introduced during the execution of $\Pi'$, the parties are able to determine what the outcome of running $\Pi$ would be in an ... more >>>

TR22-050 | 12th April 2022
Klim Efremenko, Bernhard Haeupler, Yael Kalai, Pritish Kamath, Gillat Kol, Nicolas Resch, Raghuvansh Saxena

Circuits Resilient to Short-Circuit Errors

Given a Boolean circuit $C$, we wish to convert it to a circuit $C'$ that computes the same function as $C$ even if some of its gates suffer from adversarial short circuit errors, i.e., their output is replaced by the value of one of their inputs [KLM97]. Can we ... more >>>

TR19-122 | 13th September 2019
Jonathan Mosheiff, Nicolas Resch, Noga Ron-Zewi, Shashwat Silas, Mary Wootters

LDPC Codes Achieve List-Decoding Capacity

Revisions: 3

We show that Gallager's ensemble of Low-Density Parity Check (LDPC) codes achieve list-decoding capacity. These are the first graph-based codes shown to have this property. Previously, the only codes known to achieve list-decoding capacity were completely random codes, random linear codes, and codes constructed by algebraic (rather than combinatorial) techniques. ... more >>>

TR19-080 | 1st June 2019
Swastik Kopparty, Nicolas Resch, Noga Ron-Zewi, Shubhangi Saraf, Shashwat Silas

On List Recovery of High-Rate Tensor Codes

We continue the study of list recovery properties of high-rate tensor codes, initiated by Hemenway, Ron-Zewi, and Wootters (FOCS'17). In that work it was shown that the tensor product of an efficient (poly-time) high-rate globally list recoverable code is {\em approximately} locally list recoverable, as well as globally list recoverable ... more >>>

TR18-017 | 26th January 2018
Venkatesan Guruswami, Nicolas Resch, Chaoping Xing

Lossless dimension expanders via linearized polynomials and subspace designs

For a vector space $\mathbb{F}^n$ over a field $\mathbb{F}$, an $(\eta,\beta)$-dimension expander of degree $d$ is a collection of $d$ linear maps $\Gamma_j : \mathbb{F}^n \to \mathbb{F}^n$ such that for every subspace $U$ of $\mathbb{F}^n$ of dimension at most $\eta n$, the image of $U$ under all the maps, $\sum_{j=1}^d ... more >>>

ISSN 1433-8092 | Imprint