We study the one-clean-qubit model of quantum communication where one qubit is in a pure state and all other qubits are maximally mixed. We demonstrate a partial function that has a quantum protocol of cost $O(\log N)$ in this model, however, every interactive randomized protocol has cost $\Omega(\sqrt{N})$, settling a ... more >>>
In this note, we observe that quantum logspace computations are verifiable by classical logspace algorithms, with unconditional security. More precisely, every language in BQL has an information-theoretically secure) streaming proof with a quantum logspace prover and a classical logspace verifier. The prover provides a polynomial-length proof that is streamed to ... more >>>
We study the advantages of quantum communication models over classical communication models that are equipped with a limited number of qubits of entanglement. In this direction, we give explicit partial functions on $n$ bits for which reducing the entanglement increases the classical communication complexity exponentially. Our separations are as follows. ... more >>>
We prove that for every 3-player (3-prover) game $\mathcal G$ with value less than one, whose query distribution has the support $\mathcal S = \{(1,0,0), (0,1,0), (0,0,1)\}$ of hamming weight one vectors, the value of the $n$-fold parallel repetition $\mathcal G^{\otimes n}$ decays polynomially fast to zero; that is, there ... more >>>
We prove that for every 3-player (3-prover) game, with binary questions and answers and value less than $1$, the value of the $n$-fold parallel repetition of the game decays polynomially fast to $0$. That is, for every such game, there exists a constant $c>0$, such that the value of the ... more >>>
We give a new proof of the fact that the parallel repetition of the (3-player) GHZ game reduces the value of the game to zero polynomially quickly. That is, we show that the value of the $n$-fold GHZ game is at most $n^{-\Omega(1)}$. This was first established by Holmgren and ... more >>>
We show that quantum algorithms of time T and space $S \ge \log T$ with intermediate measurements can be simulated by quantum algorithms of time $T\cdot \mathrm{poly}(S)$ and space $O(S\cdot \log T)$ without intermediate measurements. The best simulations prior to this work required either $\Omega(T)$ space (by the deferred measurement ... more >>>
We prove that for every parity decision tree of depth $d$ on $n$ variables, the sum of absolute values of Fourier coefficients at level $\ell$ is at most $d^{\ell/2} \cdot O(\ell \cdot \log(n))^\ell$.
Our result is nearly tight for small values of $\ell$ and extends a previous Fourier bound ...
more >>>
The Forrelation problem, first introduced by Aaronson [AA10] and Aaronson and Ambainis [AA15], is a well studied computational problem in the context of separating quantum and classical computational models. Variants of this problem were used to give tight separations between quantum and classical query complexity [AA15]; the first separation between ... more >>>
We give a quantum logspace algorithm for powering contraction matrices, that is, matrices with spectral norm at most 1. The algorithm gets as an input an arbitrary $n\times n$ contraction matrix $A$, and a parameter $T \leq poly(n)$ and outputs the entries of $A^T$, up to (arbitrary) polynomially small additive ... more >>>
We study a new type of separation between quantum and classical communication complexity which is obtained using quantum protocols where all parties are efficient, in the sense that they can be implemented by small quantum circuits with oracle access to their inputs. More precisely, we give an explicit partial Boolean ... more >>>