We design polynomial size, constant depth (namely, $AC^0$) arithmetic formulae for the greatest common divisor (GCD) of two polynomials, as well as the related problems of the discriminant, resultant, Bézout coefficients, squarefree decomposition, and the inversion of structured matrices like Sylvester and Bézout matrices. Our GCD algorithm extends to any ... more >>>
We show that lower bounds on the border rank of matrix multiplication can be used to non-trivially derandomize polynomial identity testing for small algebraic circuits. Letting $\underline{R}(n)$ denote the border rank of $n \times n \times n$ matrix multiplication, we construct a hitting set generator with seed length $O(\sqrt{n} \cdot ... more >>>
We show that any nonzero polynomial in the ideal generated by the $r \times r$ minors of an $n \times n$ matrix $X$ can be used to efficiently approximate the determinant. Specifically, for any nonzero polynomial $f$ in this ideal, we construct a small depth-three $f$-oracle circuit that approximates the ... more >>>
We show that lower bounds for explicit constant-variate polynomials over fields of characteristic $p > 0$ are sufficient to derandomize polynomial identity testing over fields of characteristic $p$. In this setting, existing work on hardness-randomness tradeoffs for polynomial identity testing requires either the characteristic to be sufficiently large or the ... more >>>