We study the arithmetic complexity of hitting set generators, which are pseudorandom objects used for derandomization of the polynomial identity testing problem. We give new explicit constructions of hitting set generators whose outputs are computable in $VNC^0$, i.e., can be computed by arithmetic formulas of constant size. Unconditionally, we construct ... more >>>
The celebrated result of Kabanets and Impagliazzo (Computational Complexity, 2004) showed that PIT algorithms imply circuit lower bounds, and vice versa. Since then it has been a major challenge to understand the precise connections between PIT and lower bounds. In particular, a main goal has been to understand which lower ... more >>>
We design polynomial size, constant depth (namely, $AC^0$) arithmetic formulae for the greatest common divisor (GCD) of two polynomials, as well as the related problems of the discriminant, resultant, Bézout coefficients, squarefree decomposition, and the inversion of structured matrices like Sylvester and Bézout matrices. Our GCD algorithm extends to any ... more >>>
We show that lower bounds on the border rank of matrix multiplication can be used to non-trivially derandomize polynomial identity testing for small algebraic circuits. Letting $\underline{R}(n)$ denote the border rank of $n \times n \times n$ matrix multiplication, we construct a hitting set generator with seed length $O(\sqrt{n} \cdot ... more >>>
We show that any nonzero polynomial in the ideal generated by the $r \times r$ minors of an $n \times n$ matrix $X$ can be used to efficiently approximate the determinant. Specifically, for any nonzero polynomial $f$ in this ideal, we construct a small depth-three $f$-oracle circuit that approximates the ... more >>>
We show that lower bounds for explicit constant-variate polynomials over fields of characteristic $p > 0$ are sufficient to derandomize polynomial identity testing over fields of characteristic $p$. In this setting, existing work on hardness-randomness tradeoffs for polynomial identity testing requires either the characteristic to be sufficiently large or the ... more >>>