Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

All reports by Author Robert Andrews:

TR22-111 | 1st August 2022
Robert Andrews

On Matrix Multiplication and Polynomial Identity Testing

We show that lower bounds on the border rank of matrix multiplication can be used to non-trivially derandomize polynomial identity testing for small algebraic circuits. Letting $\underline{R}(n)$ denote the border rank of $n \times n \times n$ matrix multiplication, we construct a hitting set generator with seed length $O(\sqrt{n} \cdot ... more >>>

TR21-172 | 1st December 2021
Robert Andrews, Michael Forbes

Ideals, Determinants, and Straightening: Proving and Using Lower Bounds for Polynomial Ideals

We show that any nonzero polynomial in the ideal generated by the $r \times r$ minors of an $n \times n$ matrix $X$ can be used to efficiently approximate the determinant. Specifically, for any nonzero polynomial $f$ in this ideal, we construct a small depth-three $f$-oracle circuit that approximates the ... more >>>

TR20-081 | 21st May 2020
Robert Andrews

Algebraic Hardness versus Randomness in Low Characteristic

We show that lower bounds for explicit constant-variate polynomials over fields of characteristic $p > 0$ are sufficient to derandomize polynomial identity testing over fields of characteristic $p$. In this setting, existing work on hardness-randomness tradeoffs for polynomial identity testing requires either the characteristic to be sufficiently large or the ... more >>>

ISSN 1433-8092 | Imprint