The coding theorem for Kolmogorov complexity states that any string sampled from a computable distribution has a description length close to its information content. A coding theorem for resource-bounded Kolmogorov complexity is the key to obtaining fundamental results in average-case complexity, yet whether any samplable distribution admits a coding theorem ... more >>>
The fundamental theorem of Goldreich, Micali, and Wigderson (J. ACM 1991) shows that the existence of a one-way function is sufficient for constructing computational zero knowledge ($\mathrm{CZK}$) proofs for all languages in $\mathrm{NP}$. We prove its converse, thereby establishing characterizations of one-way functions based on the worst-case complexities of ... more >>>
Pessiland is one of Impagliazzo's five possible worlds in which NP is hard on average, yet no one-way function exists. This world is considered the most pessimistic because it offers neither algorithmic nor cryptographic benefits.
In this paper, we develop a unified framework for constructing strong learning algorithms ... more >>>
Symmetry of Information (SoI) is a fundamental property of Kolmogorov complexity that relates the complexity of a pair of strings and their conditional complexities. Understanding if this property holds in the time-bounded setting is a longstanding open problem. In the nineties, Longpré and Mocas (1993) and Longpré and Watanabe (1995) ... more >>>
A polynomial-stretch pseudorandom generator (PPRG) in NC$^0$ (i.e., constant parallel time) is one of the most important cryptographic primitives, especially for constructing highly efficient cryptography and indistinguishability obfuscation. The celebrated work (Applebaum, Ishai, and Kushilevitz, SIAM Journal on Computing, 2006) on randomized encodings yields the characterization of sublinear-stretch pseudorandom generators ... more >>>
A PAC learning model involves two worst-case requirements: a learner must learn all functions in a class on all example distributions. However, basing the hardness of learning on NP-hardness has remained a key challenge for decades. In fact, recent progress in computational complexity suggests the possibility that a weaker assumption ... more >>>
A black-box (BB) reduction is a central proof technique in theoretical computer science. However, the limitations on BB reductions have been revealed for several decades, and the series of previous work gives strong evidence that we should avoid a nonadaptive BB reduction to base cryptography on NP-hardness (e.g., Akavia et ... more >>>