Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

All reports by Author Joshua Cook:

TR24-032 | 22nd February 2024
Joshua Cook, Dana Moshkovitz

Explicit Time and Space Efficient Encoders Exist Only With Random Access

We give the first explicit constant rate, constant relative distance, linear codes with an encoder that runs in time $n^{1 + o(1)}$ and space $\mathop{polylog}(n)$ provided random access to the message. Prior to this work, the only such codes were non-explicit, for instance repeat accumulate codes [DJM98] and the codes ... more >>>

TR23-097 | 2nd July 2023
Joshua Cook, Ron D. Rothblum

Efficient Interactive Proofs for Non-Deterministic Bounded Space

Revisions: 1

The celebrated $\mathbf{IP}=\mathbf{PSPACE}$ Theorem gives an efficient interactive proof for any bounded-space algorithm. In this work we study interactive proofs for non-deterministic bounded space computations. While Savitch's Theorem shows that nondeterministic bounded-space algorithms can be simulated by deterministic bounded-space algorithms, this simulation has a quadratic overhead. We give interactive protocols ... more >>>

TR22-093 | 28th June 2022
Joshua Cook

More Verifier Efficient Interactive Protocols For Bounded Space

Revisions: 4

Let $\mathbf{TISP}[T, S]$, $\mathbf{BPTISP}[T, S]$, $\mathbf{NTISP}[T, S]$, and $\mathbf{CoNTISP}[T, S]$ be the set of languages recognized by deterministic, randomized, nondeterminsitic, and co-nondeterministic algorithms, respectively, running in time $T$ and space $S$. Let $\mathbf{ITIME}[T_V]$ be the set of languages recognized by an interactive protocol where the verifier runs in time $T_V$. ... more >>>

TR22-014 | 8th February 2022
Joshua Cook, Dana Moshkovitz

Tighter MA/1 Circuit Lower Bounds From Verifier Efficient PCPs for PSPACE

Revisions: 2

We prove for some constant $a > 1$, for all $k \leq a$,
$$\mathbf{MATIME}[n^{k + o(1)}] / 1 \not \subset \mathbf{SIZE}[O(n^{k})],$$
for some specific $o(1)$ function. This improves on the Santhanam lower bound, which says there exists constant $c$ such that for all $k > 1$:
$$\mathbf{MATIME}[n^{c k}] / 1 ... more >>>

TR20-122 | 8th August 2020
Joshua Cook

Size Bounds on Low Depth Circuits for Promise Majority

Revisions: 3

We give two results on the size of AC0 circuits computing promise majority. $\epsilon$-promise majority is majority promised that either at most an $\epsilon$ fraction of the input bits are 1, or at most $\epsilon$ are 0.

First, we show super quadratic lower bounds on both monotone and general depth ... more >>>

ISSN 1433-8092 | Imprint