Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > DAN CARMON:
All reports by Author Dan Carmon:

TR25-169 | 7th November 2025
Eli Ben-Sasson, Dan Carmon, Ulrich Haböck, Swastik Kopparty, Shubhangi Saraf

On Proximity Gaps for Reed-Solomon Codes

This paper is about the proximity gaps phenomenon for Reed-Solomon codes.
Very roughly, the proximity gaps phenomenon for a code $\mathcal C \subseteq \mathbb F_q^n$ says that for two vectors $f,g \in \mathbb F_q^n$, if sufficiently many linear combinations $f + z \cdot g$ (with $z \in \mathbb F_q$) ... more >>>


TR22-110 | 1st August 2022
Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, David Levit

Scalable and Transparent Proofs over All Large Fields, via Elliptic Curves

Concretely efficient interactive oracle proofs (IOPs) are of interest due to their applications to scaling blockchains, their minimal security assumptions, and their potential future-proof resistance to quantum attacks.

Scalable IOPs, in which prover time scales quasilinearly with the computation size and verifier time scales poly-logarithmically with it, have been known ... more >>>


TR21-103 | 18th July 2021
Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, David Levit

Elliptic Curve Fast Fourier Transform (ECFFT) Part I: Fast Polynomial Algorithms over all Finite Fields

Revisions: 1

Over finite fields $F_q$ containing a root of unity of smooth order $n$ (smoothness means $n$ is the product of small primes), the Fast Fourier Transform (FFT) leads to the fastest known algebraic algorithms for many basic polynomial operations, such as multiplication, division, interpolation and multi-point evaluation. These operations can ... more >>>


TR20-083 | 30th May 2020
Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, Shubhangi Saraf

Proximity Gaps for Reed-Solomon Codes

Revisions: 3

A collection of sets displays a proximity gap with respect to some property if for every set in the collection, either (i) all members are $\delta$-close to the property in relative Hamming distance or (ii) only a tiny fraction of members are $\delta$-close to the property. In particular, no set ... more >>>




ISSN 1433-8092 | Imprint