We establish new correlation bounds and pseudorandom generators for a collection of computation models. These models are all natural generalizations of structured low-degree $F_2$-polynomials that we did not have correlation bounds for before. In particular:
1. We construct a PRG for width-2 $poly(n)$-length branching programs which read $d$ bits ... more >>>
Kumar (CCC, 2023) used a novel switching lemma to prove exponential-size lower bounds for a circuit class $GC^0$ that not only contains $AC^0$ but can---with a single gate---compute functions that require exponential-size $TC^0$ circuits. Their main result was that switching-lemma lower bounds for $AC^0$ lift to $GC^0$ with no loss ... more >>>
We study a natural complexity measure of Boolean functions known as the (exact) rational degree. For total functions $f$, it is conjectured that $\mathrm{rdeg}(f)$ is polynomially related to $\mathrm{deg}(f)$, where $\mathrm{deg}(f)$ is the Fourier degree. Towards this conjecture, we show that symmetric functions have rational degree at least $\mathrm{deg}(f)/2$ and ... more >>>
We cement the intuitive connection between relaxed local correctability and local testing by presenting a concrete framework for building a relaxed locally correctable code from any family of linear locally testable codes with sufficiently high rate. When instantiated using the locally testable codes of Dinur et al. (STOC 2022), this ... more >>>
We initiate the study of generalized $AC^0$ circuits comprised of arbitrary unbounded fan-in gates which only need to be constant over inputs of Hamming weight $\ge k$ (up to negations of the input bits), which we denote $GC^0(k)$. The gate set of this class includes biased LTFs like the $k$-$OR$ ... more >>>
Random walks on expanders are a central and versatile tool in pseudorandomness. If an arbitrary half of the vertices of an expander graph are marked, known Chernoff bounds for expander walks imply that the number $M$ of marked vertices visited in a long $n$-step random walk strongly concentrates around the ... more >>>