Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > VINAYAK KUMAR:
All reports by Author Vinayak Kumar:

TR25-002 | 14th January 2025
Vinayak Kumar

New Pseudorandom Generators and Correlation Bounds Using Extractors

We establish new correlation bounds and pseudorandom generators for a collection of computation models. These models are all natural generalizations of structured low-degree $F_2$-polynomials that we did not have correlation bounds for before. In particular:

1. We construct a PRG for width-2 $poly(n)$-length branching programs which read $d$ bits ... more >>>


TR24-130 | 30th August 2024
Sabee Grewal, Vinayak Kumar

Improved Circuit Lower Bounds With Applications to Exponential Separations Between Quantum and Classical Circuits

Revisions: 1

Kumar (CCC, 2023) used a novel switching lemma to prove exponential-size lower bounds for a circuit class $GC^0$ that not only contains $AC^0$ but can---with a single gate---compute functions that require exponential-size $TC^0$ circuits. Their main result was that switching-lemma lower bounds for $AC^0$ lift to $GC^0$ with no loss ... more >>>


TR23-154 | 12th October 2023
Vishnu Iyer, Siddhartha Jain, Matt Kovacs-Deak, Vinayak Kumar, Luke Schaeffer, Daochen Wang, Michael Whitmeyer

On the Rational Degree of Boolean Functions and Applications

We study a natural complexity measure of Boolean functions known as the (exact) rational degree. For total functions $f$, it is conjectured that $\mathrm{rdeg}(f)$ is polynomially related to $\mathrm{deg}(f)$, where $\mathrm{deg}(f)$ is the Fourier degree. Towards this conjecture, we show that symmetric functions have rational degree at least $\mathrm{deg}(f)/2$ and ... more >>>


TR23-093 | 29th June 2023
Vinayak Kumar, Geoffrey Mon

Relaxed Local Correctability from Local Testing

Revisions: 1

We cement the intuitive connection between relaxed local correctability and local testing by presenting a concrete framework for building a relaxed locally correctable code from any family of linear locally testable codes with sufficiently high rate. When instantiated using the locally testable codes of Dinur et al. (STOC 2022), this ... more >>>


TR23-045 | 13th April 2023
Vinayak Kumar

Tight Correlation Bounds for Circuits Between AC0 and TC0

Revisions: 1

We initiate the study of generalized $AC^0$ circuits comprised of arbitrary unbounded fan-in gates which only need to be constant over inputs of Hamming weight $\ge k$ (up to negations of the input bits), which we denote $GC^0(k)$. The gate set of this class includes biased LTFs like the $k$-$OR$ ... more >>>


TR20-151 | 8th October 2020
Venkatesan Guruswami, Vinayak Kumar

Pseudobinomiality of the Sticky Random Walk

Random walks on expanders are a central and versatile tool in pseudorandomness. If an arbitrary half of the vertices of an expander graph are marked, known Chernoff bounds for expander walks imply that the number $M$ of marked vertices visited in a long $n$-step random walk strongly concentrates around the ... more >>>




ISSN 1433-8092 | Imprint