We study linearity testing over the $p$-biased hypercube $(\{0,1\}^n, \mu_p^{\otimes n})$ in the 1% regime. For a distribution $\nu$ supported over $\{x\in \{0,1\}^k:\sum_{i=1}^k x_i=0 \text{ (mod 2)} \}$, with marginal distribution $\mu_p$ in each coordinate, the corresponding $k$-query linearity test $\text{Lin}(\nu)$ proceeds as follows: Given query access to a function ... more >>>
We prove that for every 3-player (3-prover) game $\mathcal G$ with value less than one, whose query distribution has the support $\mathcal S = \{(1,0,0), (0,1,0), (0,0,1)\}$ of hamming weight one vectors, the value of the $n$-fold parallel repetition $\mathcal G^{\otimes n}$ decays polynomially fast to zero; that is, there ... more >>>
We prove that for every 3-player (3-prover) game, with binary questions and answers and value less than $1$, the value of the $n$-fold parallel repetition of the game decays polynomially fast to $0$. That is, for every such game, there exists a constant $c>0$, such that the value of the ... more >>>
We give a new proof of the fact that the parallel repetition of the (3-player) GHZ game reduces the value of the game to zero polynomially quickly. That is, we show that the value of the $n$-fold GHZ game is at most $n^{-\Omega(1)}$. This was first established by Holmgren and ... more >>>
We prove that a sufficiently strong parallel repetition theorem for a special case of multiplayer (multiprover) games implies super-linear lower bounds for multi-tape Turing machines with advice. To the best of our knowledge, this is the first connection between parallel repetition and lower bounds for time complexity and the first ... more >>>