We show that the complexity class of exponential-time Arthur Merlin with sub-exponential advice ($AMEXP_{/2^{n^{\varepsilon}}}$) requires circuit complexity at least $2^n/n$. Previously, the best known such near-maximum lower bounds were for symmetric exponential time by Chen, Hirahara, and Ren (STOC'24) and Li (STOC'24), or randomized exponential time with MCSP oracle and ... more >>>
This paper revisits the study of two classical technical tools in theoretical computer science: Yao's transformation of distinguishers to next-bit predictors (FOCS 1982), and the ``reconstruction paradigm'' in pseudorandomness (e.g., as in Nisan and Wigderson, JCSS 1994). Recent works of Pyne, Raz, and Zhan (FOCS 2023) and Doron, Pyne, and ... more >>>
In the catalytic logspace ($CL$) model of (Buhrman et.~al.~STOC 2013), we are given a small work tape, and a larger catalytic tape that has an arbitrary initial configuration. We may edit this tape, but it must be exactly restored to its initial configuration at the completion of the computation. This ... more >>>
We show that there is a constant $k$ such that Buss's intuitionistic theory $\mathbf{IS}^1_2$ does not prove that SAT requires co-nondeterministic circuits of size at least $n^k$. To our knowledge, this is the first unconditional unprovability result in bounded arithmetic in the context of worst-case fixed-polynomial size circuit lower bounds. ... more >>>
Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are necessary to prove a given theorem. In this work, we systematically explore the reverse mathematics of complexity lower bounds. We explore reversals in the setting of bounded arithmetic, with Cook's theory $\mathbf{PV}_1$ as the base ... more >>>
A recent line of research has introduced a systematic approach to explore the complexity of explicit construction problems through the use of meta problems, namely, the range avoidance problem (abbrev. Avoid) and the remote point problem (abbrev. RPP). The upper and lower bounds for these meta problems provide a unified ... more >>>
The *range avoidance problem*, denoted as $\mathcal{C}$-$\rm Avoid$, asks to find a non-output of a given $\mathcal{C}$-circuit $C:\{0,1\}^n\to\{0,1\}^\ell$ with stretch $\ell>n$. This problem has recently received much attention in complexity theory for its connections with circuit lower bounds and other explicit construction problems. Inspired by the Algorithmic Method for circuit ... more >>>
The range avoidance problem (denoted by Avoid) asks to find a string outside of the range of a given circuit $C:\{0,1\}^n\to\{0,1\}^m$, where $m>n$. Although at least half of the strings of length $m$ are correct answers, it is not clear how to deterministically find one. Recent results of Korten (FOCS'21) ... more >>>
While there has been progress in establishing the unprovability of complexity statements in lower fragments of bounded arithmetic, understanding the limits of Jerabek's theory $\textbf{APC}_1$ (2007) and of higher levels of Buss's hierarchy $\textbf{S}^i_2$ (1986) has been a more elusive task. Even in the more restricted setting of Cook's theory ... more >>>
In a recent work, Fan, Li, and Yang (STOC 2022) constructed a family of almost-universal hash functions such that each function in the family is computable by $(2n + o(n))$-gate circuits of fan-in $2$ over the $B_2$ basis. Applying this family, they established the existence of pseudorandom functions computable by ... more >>>
How much computational resource do we need for cryptography? This is an important question of both theoretical and practical interests. In this paper, we study the problem on pseudorandom functions (PRFs) in the context of circuit complexity. Perhaps surprisingly, we prove extremely tight upper and lower bounds in various circuit ... more >>>
Proving circuit lower bounds has been an important but extremely hard problem for decades. Although one may show that almost every function $f:\mathbb{F}_2^n\to\mathbb{F}_2$ requires circuit of size $\Omega(2^n/n)$ by a simple counting argument, it remains unknown whether there is an explicit function (for example, a function in $NP$) not computable ... more >>>