Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > ODED NIR:
All reports by Author Oded Nir:

TR23-136 | 14th September 2023
Benny Applebaum, Oded Nir

Advisor-Verifier-Prover Games and the Hardness of Information Theoretic Cryptography

A major open problem in information-theoretic cryptography is to obtain a super-polynomial lower bound for the communication complexity of basic cryptographic tasks. This question is wide open even for very powerful non-interactive primitives such as private information retrieval (or locally-decodable codes), general secret sharing schemes, conditional disclosure of secrets, and ... more >>>


TR23-087 | 9th June 2023
Benny Applebaum, Oded Nir, Benny Pinkas

How to Recover a Secret with $O(n)$ Additions

Revisions: 1

Threshold cryptography is typically based on the idea of secret-sharing a private-key $s\in F$ ``in the exponent'' of some cryptographic group $G$, or more generally, encoding $s$ in some linearly homomorphic domain. In each invocation of the threshold system (e.g., for signing or decrypting) an ``encoding'' of the secret is ... more >>>


TR22-006 | 12th January 2022
Benny Applebaum, Amos Beimel, Oded Nir, Naty Peter, Toniann Pitassi

Secret Sharing, Slice Formulas, and Monotone Real Circuits

A secret-sharing scheme allows to distribute a secret $s$ among $n$ parties such that only some predefined ``authorized'' sets of parties can reconstruct the secret, and all other ``unauthorized'' sets learn nothing about $s$. For over 30 years, it was known that any (monotone) collection of authorized sets can be ... more >>>


TR21-052 | 12th April 2021
Benny Applebaum, Oded Nir

Upslices, Downslices, and Secret-Sharing with Complexity of $1.5^n$

A secret-sharing scheme allows to distribute a secret $s$ among $n$ parties such that only some predefined ``authorized'' sets of parties can reconstruct the secret, and all other ``unauthorized'' sets learn nothing about $s$.
The collection of authorized/unauthorized sets can be captured by a monotone function $f:\{0,1\}^n\rightarrow \{0,1\}$.
more >>>


TR20-008 | 26th January 2020
Benny Applebaum, Amos Beimel, Oded Nir, Naty Peter

Better Secret-Sharing via Robust Conditional Disclosure of Secrets

Revisions: 2

A secret-sharing scheme allows to distribute a secret $s$ among $n$ parties such that only some predefined ``authorized'' sets of parties can reconstruct the secret, and all other ``unauthorized'' sets learn nothing about $s$. The collection of authorized sets is called the access structure. For over 30 years, it was ... more >>>




ISSN 1433-8092 | Imprint