All reports by Author Oded Nir:

__
TR23-136
| 14th September 2023
__

Benny Applebaum, Oded Nir#### Advisor-Verifier-Prover Games and the Hardness of Information Theoretic Cryptography

__
TR23-087
| 9th June 2023
__

Benny Applebaum, Oded Nir, Benny Pinkas#### How to Recover a Secret with $O(n)$ Additions

Revisions: 1

__
TR22-006
| 12th January 2022
__

Benny Applebaum, Amos Beimel, Oded Nir, Naty Peter, Toniann Pitassi#### Secret Sharing, Slice Formulas, and Monotone Real Circuits

__
TR21-052
| 12th April 2021
__

Benny Applebaum, Oded Nir#### Upslices, Downslices, and Secret-Sharing with Complexity of $1.5^n$

__
TR20-008
| 26th January 2020
__

Benny Applebaum, Amos Beimel, Oded Nir, Naty Peter#### Better Secret-Sharing via Robust Conditional Disclosure of Secrets

Revisions: 2

Benny Applebaum, Oded Nir

A major open problem in information-theoretic cryptography is to obtain a super-polynomial lower bound for the communication complexity of basic cryptographic tasks. This question is wide open even for very powerful non-interactive primitives such as private information retrieval (or locally-decodable codes), general secret sharing schemes, conditional disclosure of secrets, and ... more >>>

Benny Applebaum, Oded Nir, Benny Pinkas

Threshold cryptography is typically based on the idea of secret-sharing a private-key $s\in F$ ``in the exponent'' of some cryptographic group $G$, or more generally, encoding $s$ in some linearly homomorphic domain. In each invocation of the threshold system (e.g., for signing or decrypting) an ``encoding'' of the secret is ... more >>>

Benny Applebaum, Amos Beimel, Oded Nir, Naty Peter, Toniann Pitassi

A secret-sharing scheme allows to distribute a secret $s$ among $n$ parties such that only some predefined ``authorized'' sets of parties can reconstruct the secret, and all other ``unauthorized'' sets learn nothing about $s$. For over 30 years, it was known that any (monotone) collection of authorized sets can be ... more >>>

Benny Applebaum, Oded Nir

A secret-sharing scheme allows to distribute a secret $s$ among $n$ parties such that only some predefined ``authorized'' sets of parties can reconstruct the secret, and all other ``unauthorized'' sets learn nothing about $s$.

The collection of authorized/unauthorized sets can be captured by a monotone function $f:\{0,1\}^n\rightarrow \{0,1\}$.

more >>>

Benny Applebaum, Amos Beimel, Oded Nir, Naty Peter

A secret-sharing scheme allows to distribute a secret $s$ among $n$ parties such that only some predefined ``authorized'' sets of parties can reconstruct the secret, and all other ``unauthorized'' sets learn nothing about $s$. The collection of authorized sets is called the access structure. For over 30 years, it was ... more >>>