We investigate two resources whose effects on quantum interactive proofs remain poorly understood: the promise of unentanglement, and the verifier’s ability to condition on an intermediate measurement, which we call post-measurement branching. We first show that unentanglement can dramatically increase computational power: three-round unentangled quantum interactive proofs equal NEXP, even ... more >>>
Kumar (CCC, 2023) used a novel switching lemma to prove exponential-size lower bounds for a circuit class $GC^0$ that not only contains $AC^0$ but can---with a single gate---compute functions that require exponential-size $TC^0$ circuits. Their main result was that switching-lemma lower bounds for $AC^0$ lift to $GC^0$ with no loss ... more >>>
We introduce the entangled quantum polynomial hierarchy $QEPH$ as the class of problems that are efficiently verifiable given alternating quantum proofs that may be entangled with each other. We prove $QEPH$ collapses to its second level. In fact, we show that a polynomial number of alternations collapses to just two. ... more >>>