Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > ANASTASIA SOFRONOVA:
All reports by Author Anastasia Sofronova:

TR22-054 | 21st April 2022
Anastasia Sofronova, Dmitry Sokolov

A Lower Bound for $k$-DNF Resolution on Random CNF Formulas via Expansion

Random $\Delta$-CNF formulas are one of the few candidates that are expected to be hard to refute in any proof system. One of the frontiers in the direction of proving lower bounds on these formulas is the $k$-DNF Resolution proof system (aka $\mathrm{Res}(k)$). Assume we sample $m$ clauses over $n$ ... more >>>


TR22-033 | 1st March 2022
Ivan Mihajlin, Anastasia Sofronova

A better-than-$3\log{n}$ depth lower bound for De Morgan formulas with restrictions on top gates

Comments: 2

We prove that a modification of Andreev's function is not computable by $(3 + \alpha - \varepsilon) \log{n}$ depth De Morgan formula with $(2\alpha - \varepsilon)\log{n}$ layers of AND gates at the top for any $1/5 > \alpha > 0$ and any constant $\varepsilon > 0$. In order to do ... more >>>


TR21-028 | 27th February 2021
Anastasia Sofronova, Dmitry Sokolov

Branching Programs with Bounded Repetitions and $\mathrm{Flow}$ Formulas

Restricted branching programs capture various complexity measures like space in Turing machines or length of proofs in proof systems. In this paper, we focus on the application in the proof complexity that was discovered by Lovasz et al. '95 who showed the equivalence between regular Resolution and read-once branching programs ... more >>>


TR19-069 | 6th May 2019
Nicola Galesi, Dmitry Itsykson, Artur Riazanov, Anastasia Sofronova

Bounded-depth Frege complexity of Tseitin formulas for all graphs

Revisions: 1

We prove that there is a constant $K$ such that \emph{Tseitin} formulas for an undirected graph $G$ requires proofs of
size $2^{\mathrm{tw}(G)^{\Omega(1/d)}}$ in depth-$d$ Frege systems for $d<\frac{K \log n}{\log \log n}$, where $\tw(G)$ is the treewidth of $G$. This extends H{\aa}stad recent lower bound for the grid graph ... more >>>




ISSN 1433-8092 | Imprint