In this work, we explore a non-linear extension of the classical Sylvester-Gallai configuration. Let $\mathbb{K}$ be an algebraically closed field of characteristic zero, and let $\mathcal{F} = \{F_1, \ldots, F_m\} \subset \mathbb{K}[x_1, \ldots, x_N]$ denote a collection of irreducible homogeneous polynomials of degree at most $d$, where each $F_i$ is ... more >>>
A central question in mathematics and computer science is the question of determining whether a given ideal $I$ is prime, which geometrically corresponds to the zero set of $I$, denoted $Z(I)$, being irreducible. The case of principal ideals (i.e., $m=1$) corresponds to the more familiar absolute irreducibility testing of polynomials, ... more >>>
In the last year, there have been some remarkable improvements in the combinatorial list-size bounds of Folded Reed Solomon codes and multiplicity codes. Starting from the work on Kopparty, Ron-Zewi, Saraf and Wootters (and subsequent simplifications due to Tamo), we have had dramatic improvements in the list-size bounds of FRS ... more >>>
We prove a higher codimensional radical Sylvester-Gallai type theorem for quadratic polynomials, simultaneously generalizing [Han65, Shp20]. Hansen's theorem is a high-dimensional version of the classical Sylvester-Gallai theorem in which the incidence condition is given by high-dimensional flats instead of lines. We generalize Hansen's theorem to the setting of quadratic forms ... more >>>
We prove a robust generalization of a Sylvester-Gallai type theorem for quadratic polynomials, generalizing the result in [S'20].
More precisely, given a parameter $0 < \delta \leq 1$ and a finite collection $\mathcal{F}$ of irreducible and pairwise independent polynomials of degree at most 2, we say that $\mathcal{F}$ is a ...
more >>>