Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > ABHIBHAV GARG:
All reports by Author Abhibhav Garg:

TR25-037 | 31st March 2025
Abhibhav Garg, Rafael Mendes de Oliveira, Akash Sengupta

Uniform Bounds on Product Sylvester-Gallai Configurations

Revisions: 1

In this work, we explore a non-linear extension of the classical Sylvester-Gallai configuration. Let $\mathbb{K}$ be an algebraically closed field of characteristic zero, and let $\mathcal{F} = \{F_1, \ldots, F_m\} \subset \mathbb{K}[x_1, \ldots, x_N]$ denote a collection of irreducible homogeneous polynomials of degree at most $d$, where each $F_i$ is ... more >>>


TR25-035 | 25th March 2025
Abhibhav Garg, Rafael Mendes de Oliveira, Nitin Saxena

Primes via Zeros: Interactive Proofs for Testing Primality of Natural Classes of Ideals

A central question in mathematics and computer science is the question of determining whether a given ideal $I$ is prime, which geometrically corresponds to the zero set of $I$, denoted $Z(I)$, being irreducible. The case of principal ideals (i.e., $m=1$) corresponds to the more familiar absolute irreducibility testing of polynomials, ... more >>>


TR25-015 | 20th February 2025
Abhibhav Garg, Prahladh Harsha, Mrinal Kumar, Ramprasad Saptharishi, Ashutosh Shankar

An exposition of recent list-size bounds of FRS Codes

In the last year, there have been some remarkable improvements in the combinatorial list-size bounds of Folded Reed Solomon codes and multiplicity codes. Starting from the work on Kopparty, Ron-Zewi, Saraf and Wootters (and subsequent simplifications due to Tamo), we have had dramatic improvements in the list-size bounds of FRS ... more >>>


TR23-074 | 14th May 2023
Abhibhav Garg, Rafael Mendes de Oliveira, Shir Peleg, Akash Sengupta

Radical Sylvester-Gallai Theorem for Tuples of Quadratics

We prove a higher codimensional radical Sylvester-Gallai type theorem for quadratic polynomials, simultaneously generalizing [Han65, Shp20]. Hansen's theorem is a high-dimensional version of the classical Sylvester-Gallai theorem in which the incidence condition is given by high-dimensional flats instead of lines. We generalize Hansen's theorem to the setting of quadratic forms ... more >>>


TR22-037 | 10th March 2022
Abhibhav Garg, Rafael Mendes de Oliveira, Akash Sengupta

Robust Radical Sylvester-Gallai Theorem for Quadratics

We prove a robust generalization of a Sylvester-Gallai type theorem for quadratic polynomials, generalizing the result in [S'20].
More precisely, given a parameter $0 < \delta \leq 1$ and a finite collection $\mathcal{F}$ of irreducible and pairwise independent polynomials of degree at most 2, we say that $\mathcal{F}$ is a ... more >>>




ISSN 1433-8092 | Imprint