Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > HARRY BUHRMAN:
All reports by Author Harry Buhrman:

TR14-053 | 15th April 2014
Harry Buhrman, Richard Cleve, Michal Koucky, Bruno Loff, Florian Speelman

Computing with a full memory: Catalytic space

Revisions: 1

We define the notion of a catalytic-space computation. This is a computation that has a small amount of clean space available and is equipped with additional auxiliary space, with the caveat that the additional space is initially in an arbitrary, possibly incompressible, state and must be returned to this state ... more >>>


TR12-179 | 13th December 2012
Joshua Brody, Harry Buhrman, Michal Koucky, Bruno Loff, Florian Speelman

Towards a Reverse Newman's Theorem in Interactive Information Complexity

Revisions: 2

Newman’s theorem states that we can take any public-coin communication protocol and convert it into one that uses only private randomness with only a little increase in communication complexity. We consider a reversed scenario in the context of information complexity: can we take a protocol that uses private randomness and ... more >>>


TR12-054 | 2nd May 2012
Eric Allender, Harry Buhrman, Luke Friedman, Bruno Loff

Reductions to the set of random strings:the resource-bounded case

Revisions: 1

This paper is motivated by a conjecture that BPP can be characterized in terms of polynomial-time nonadaptive reductions to the set of Kolmogorov-random strings. In this paper we show that an approach laid out by [Allender et al] to settle this conjecture cannot succeed without significant alteration, but that it ... more >>>


TR10-174 | 12th November 2010
Scott Aaronson, Baris Aydinlioglu, Harry Buhrman, John Hitchcock, Dieter van Melkebeek

A note on exponential circuit lower bounds from derandomizing Arthur-Merlin games

We present an alternate proof of the recent result by Gutfreund and Kawachi that derandomizing Arthur-Merlin games into $P^{NP}$ implies linear-exponential circuit lower bounds for $E^{NP}$. Our proof is simpler and yields stronger results. In particular, consider the promise-$AM$ problem of distinguishing between the case where a given Boolean circuit ... more >>>


TR10-163 | 3rd November 2010
Harry Buhrman, Leen Torenvliet, Falk Unger, Nikolay Vereshchagin

Sparse Selfreducible Sets and Nonuniform Lower Bounds

It is well-known that the class of sets that can be computed by polynomial size circuits is equal to the class of sets that are polynomial time reducible to a sparse set. It is widely believed, but unfortunately up to now unproven, that there are sets in $EXP^{NP}$, or even ... more >>>


TR09-064 | 3rd August 2009
Harry Buhrman, Lance Fortnow, Rahul Santhanam

Unconditional Lower Bounds against Advice

We show several unconditional lower bounds for exponential time classes
against polynomial time classes with advice, including:
\begin{enumerate}
\item For any constant $c$, $\NEXP \not \subseteq \P^{\NP[n^c]}/n^c$
\item For any constant $c$, $\MAEXP \not \subseteq \MA/n^c$
\item $\BPEXP \not \subseteq \BPP/n^{o(1)}$
\end{enumerate}

It was previously unknown even whether $\NEXP \subseteq ... more >>>


TR09-060 | 4th June 2009
Harry Buhrman, David García Soriano, Arie Matsliah

Learning parities in the mistake-bound model.

We study the problem of learning parity functions that depend on at most $k$ variables ($k$-parities) attribute-efficiently in the mistake-bound model.
We design simple, deterministic, polynomial-time algorithms for learning $k$-parities with mistake bound $O(n^{1-\frac{c}{k}})$, for any constant $c > 0$. These are the first polynomial-time algorithms that learn $\omega(1)$-parities in ... more >>>


TR08-022 | 9th January 2008
Harry Buhrman, John Hitchcock

NP-Hard Sets are Exponentially Dense Unless NP is contained in coNP/poly

We show that hard sets S for NP must have exponential density, i.e. |S<sub>=n</sub>| &#8805; 2<sup>n<sup>&#949;</sup></sup> for some &#949; > 0 and infinitely many n, unless coNP &#8838; NP\poly and the polynomial-time hierarchy collapses. This result holds for Turing reductions that make n<sup>1-&#949;</sup> queries.

In addition we study the instance ... more >>>


TR04-081 | 9th September 2004
Harry Buhrman, Lance Fortnow, Ilan Newman, Nikolay Vereshchagin

Increasing Kolmogorov Complexity

How much do we have to change a string to increase its Kolmogorov complexity. We show that we can
increase the complexity of any non-random string of length n by flipping O(sqrt(n)) bits and some strings
require
Omega(sqrt(n)) bit flips. For a given m, we also give bounds for ... more >>>


TR04-044 | 1st June 2004
Eric Allender, Harry Buhrman, Michal Koucky

What Can be Efficiently Reduced to the Kolmogorov-Random Strings?

We investigate the question of whether one can characterize complexity
classes (such as PSPACE or NEXP) in terms of efficient
reducibility to the set of Kolmogorov-random strings R_C.
We show that this question cannot be posed without explicitly dealing
with issues raised by the choice of universal
machine in the ... more >>>


TR04-015 | 24th February 2004
Richard Beigel, Harry Buhrman, Peter Fejer, Lance Fortnow, Piotr Grabowski, Luc Longpré, Andrej Muchnik, Frank Stephan, Leen Torenvliet

Enumerations of the Kolmogorov Function

A recursive enumerator for a function $h$ is an algorithm $f$ which
enumerates for an input $x$ finitely many elements including $h(x)$.
$f$ is an $k(n)$-enumerator if for every input $x$ of length $n$, $h(x)$
is among the first $k(n)$ elements enumerated by $f$.
If there is a $k(n)$-enumerator for ... more >>>


TR04-002 | 8th January 2004
Troy Lee, Dieter van Melkebeek, Harry Buhrman

Language Compression and Pseudorandom Generators

The language compression problem asks for succinct descriptions of
the strings in a language A such that the strings can be efficiently
recovered from their description when given a membership oracle for
A. We study randomized and nondeterministic decompression schemes
and investigate how close we can get to the information ... more >>>


TR02-028 | 15th May 2002
Eric Allender, Harry Buhrman, Michal Koucky, Detlef Ronneburger, Dieter van Melkebeek

Power from Random Strings

Revisions: 1

We consider sets of strings with high Kolmogorov complexity, mainly
in resource-bounded settings but also in the traditional
recursion-theoretic sense. We present efficient reductions, showing
that these sets are hard and complete for various complexity classes.

In particular, in addition to the usual Kolmogorov complexity measure
K, ... more >>>


TR01-019 | 2nd March 2001
Andris Ambainis, Harry Buhrman, William Gasarch, Bala Kalyansundaram, Leen Torenvliet

The Communication Complexity of Enumeration, Elimination, and Selection

Normally, communication Complexity deals with how many bits
Alice and Bob need to exchange to compute f(x,y)
(Alice has x, Bob has y). We look at what happens if
Alice has x_1,x_2,...,x_n and Bob has y_1,...,y_n
and they want to compute f(x_1,y_1)... f(x_n,y_n).
THis seems hard. We look at various ... more >>>




ISSN 1433-8092 | Imprint