The coding theorem for Kolmogorov complexity states that any string sampled from a computable distribution has a description length close to its information content. A coding theorem for resource-bounded Kolmogorov complexity is the key to obtaining fundamental results in average-case complexity, yet whether any samplable distribution admits a coding theorem ... more >>>
We consider indistinguishability obfuscation (iO) for multi-output circuits $C:\{0,1\}^n\to\{0,1\}^n$ of size s, where s is the number of AND/OR/NOT gates in C. Under the worst-case assumption that NP $\nsubseteq$ BPP, we establish that there is no efficient indistinguishability obfuscation scheme that outputs circuits of size $s + o(s/ \log s)$. ... more >>>
We introduce $\mathrm{pKt}$ complexity, a new notion of time-bounded Kolmogorov complexity that can be seen as a probabilistic analogue of Levin's $\mathrm{Kt}$ complexity. Using $\mathrm{pKt}$ complexity, we upgrade two recent frameworks that characterize one-way functions ($\mathrm{OWFs}$) via symmetry of information and meta-complexity, respectively. Among other contributions, we establish the following ... more >>>
We develop new characterizations of Impagliazzo's worlds Algorithmica, Heuristica and Pessiland by the intractability of conditional Kolmogorov complexity $\mathrm{K}$ and conditional probabilistic time-bounded Kolmogorov complexity $\mathrm{pK}^t$.
In our first set of results, we show that $\mathrm{NP} \subseteq \mathrm{BPP}$ iff $\mathrm{pK}^t(x \mid y)$ can be computed efficiently in the worst case ... more >>>
A search-to-decision reduction is a procedure that allows one to find a solution to a problem from the mere ability to decide when a solution exists. The existence of a search-to-decision reduction for time-bounded Kolmogorov complexity, i.e., the problem of checking if a string $x$ can be generated by a ... more >>>
A randomized algorithm for a search problem is *pseudodeterministic* if it produces a fixed canonical solution to the search problem with high probability. In their seminal work on the topic, Gat and Goldwasser posed as their main open problem whether prime numbers can be pseudodeterministically constructed in polynomial time.
... more >>>Relativization is one of the most fundamental concepts in complexity theory, which explains the difficulty of resolving major open problems. In this paper, we propose a weaker notion of relativization called *bounded relativization*. For a complexity class $C$, we say that a statement is *$C$-relativizing* if the statement holds relative ... more >>>
Symmetry of Information (SoI) is a fundamental property of Kolmogorov complexity that relates the complexity of a pair of strings and their conditional complexities. Understanding if this property holds in the time-bounded setting is a longstanding open problem. In the nineties, Longpré and Mocas (1993) and Longpré and Watanabe (1995) ... more >>>
Diverse applications of Kolmogorov complexity to learning [CIKK16], circuit complexity [OPS19], cryptography [LP20], average-case complexity [Hir21], and proof search [Kra22] have been discovered in recent years. Since the running time of algorithms is a key resource in these fields, it is crucial in the corresponding arguments to consider time-bounded variants ... more >>>
Understanding the relationship between the worst-case and average-case complexities of $\mathrm{NP}$ and of other subclasses of $\mathrm{PH}$ is a long-standing problem in complexity theory. Over the last few years, much progress has been achieved in this front through the investigation of meta-complexity: the complexity of problems that refer to the ... more >>>