Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

All reports by Author Nobutaka Shimizu:

TR24-058 | 29th March 2024
Shuichi Hirahara, Nobutaka Shimizu

Planted Clique Conjectures Are Equivalent

The planted clique conjecture states that no polynomial-time algorithm can find a hidden clique of size $k \ll \sqrt{n}$ in an $n$-vertex Erd\H{o}s--R\'enyi random graph with a $k$-clique planted. In this paper, we prove the equivalence among many (in fact, \emph{most}) variants of planted clique conjectures, such as search ... more >>>

TR23-026 | 15th March 2023
Shuichi Hirahara, Nobutaka Shimizu

Hardness Self-Amplification: Simplified, Optimized, and Unified

Strong (resp. weak) average-case hardness refers to the properties of a computational problem in which a large (resp. small) fraction of instances are hard to solve. We develop a general framework for proving hardness self-amplification, that is, the equivalence between strong and weak average-case hardness. Using this framework, we prove ... more >>>

TR22-108 | 18th July 2022
Shuichi Hirahara, Nobutaka Shimizu

Hardness Self-Amplification from Feasible Hard-Core Sets

We consider the question of hardness self-amplification: Given a Boolean function $f$ that is hard to compute on a $o(1)$-fraction of inputs drawn from some distribution, can we prove that $f$ is hard to compute on a $(\frac{1}{2} - o(1))$-fraction of inputs drawn from the same distribution? We prove hardness ... more >>>

ISSN 1433-8092 | Imprint