We give improved lower bounds for binary $3$-query locally correctable codes (3-LCCs) $C \colon \{0,1\}^k \rightarrow \{0,1\}^n$. Specifically, we prove:
(1) If $C$ is a linear design 3-LCC, then $n \geq 2^{(1 - o(1))\sqrt{k} }$. A design 3-LCC has the additional property that the correcting sets for every ...
more >>>
We prove that the blocklength $n$ of a linear $3$-query locally correctable code (LCC) $\mathcal{L} \colon \mathbb{F}^k \to \mathbb{F}^n$ with distance $\delta$ must be at least $n \geq 2^{\Omega\left(\left(\frac{\delta^2 k}{(|\mathbb{F}|-1)^2}\right)^{1/8}\right)}$. In particular, the blocklength of a linear $3$-query LCC with constant distance over any small field grows exponentially with $k$. ... more >>>
A code $C \colon \{0,1\}^k \to \{0,1\}^n$ is a $q$-locally decodable code ($q$-LDC) if one can recover any chosen bit $b_i$ of the message $b \in \{0,1\}^k$ with good confidence by randomly querying the encoding $x = C(b)$ on at most $q$ coordinates. Existing constructions of $2$-LDCs achieve $n = ... more >>>
Non-signaling strategies are a generalization of quantum strategies that have been studied in physics for decades, and have recently found applications in theoretical computer science. These applications motivate the study of local-to-global phenomena for non-signaling functions.
We present general results about the local testability of linear codes in the non-signaling ... more >>>
Non-signaling strategies are a generalization of quantum strategies that have been studied in physics over the past three decades. Recently, they have found applications in theoretical computer science, including to proving inapproximability results for linear programming and to constructing protocols for delegating computation. A central tool for these applications is ... more >>>
Non-signaling strategies are collections of distributions with certain non-local correlations. They have been studied in Physics as a strict generalization of quantum strategies to understand the power and limitations of Nature's apparent non-locality. Recently, they have received attention in Theoretical Computer Science due to connections to Complexity and Cryptography.
We ... more >>>
Many low-degree tests examine the input function via its restrictions to random hyperplanes of a certain dimension. Examples include the line-vs-line (Arora, Sudan 2003), plane-vs-plane (Raz, Safra 1997), and cube-vs-cube (Bhangale, Dinur, Livni 2017) tests.
In this paper we study a test introduced by Ben-Sasson and Sudan in 2006 that ... more >>>