Bennett and Gill (1981) showed that P^A != NP^A != coNP^A for a random
oracle A, with probability 1. We investigate whether this result
extends to individual polynomial-time random oracles. We consider two
notions of random oracles: p-random oracles in the sense of
martingales and resource-bounded measure (Lutz, 1992; Ambos-Spies ...
more >>>
The measure hypothesis is a quantitative strengthening of the P $\neq$ NP conjecture which asserts that NP is a nonnegligible subset of EXP. Cai, Sivakumar, and Strauss (1997) showed that the analogue of this hypothesis in P is false. In particular, they showed that NTIME[$n^{1/11}$] has measure 0 in P. ... more >>>
Nonuniformity is a central concept in computational complexity with powerful connections to circuit complexity and randomness. Nonuniform reductions have been used to study the isomorphism conjecture for NP and completeness for larger complexity classes. We study the power of nonuniform reductions for NP-completeness, obtaining both separations and upper bounds for ... more >>>
We study the polynomial-time autoreducibility of NP-complete sets and obtain separations under strong hypotheses for NP. Assuming there is a p-generic set in NP, we show the following:
- For every $k \geq 2$, there is a $k$-T-complete set for NP that is $k$-T autoreducible, but is not $k$-tt autoreducible ... more >>>
We present an alternate proof of the recent result by Gutfreund and Kawachi that derandomizing Arthur-Merlin games into $P^{NP}$ implies linear-exponential circuit lower bounds for $E^{NP}$. Our proof is simpler and yields stronger results. In particular, consider the promise-$AM$ problem of distinguishing between the case where a given Boolean circuit ... more >>>
We clarify the role of Kolmogorov complexity in the area of randomness extraction. We show that a computable function is an almost randomness extractor if and only if it is a Kolmogorov complexity
extractor, thus establishing a fundamental equivalence between two forms of extraction studied in the literature: Kolmogorov extraction
more >>>
We show that hard sets S for NP must have exponential density, i.e. |S<sub>=n</sub>| ≥ 2<sup>n<sup>ε</sup></sup> for some ε > 0 and infinitely many n, unless coNP ⊆ NP\poly and the polynomial-time hierarchy collapses. This result holds for Turing reductions that make n<sup>1-ε</sup> queries.
In addition we study the instance ... more >>>
We consider hypotheses about nondeterministic computation that
have been studied in different contexts and shown to have interesting
consequences:
1. The measure hypothesis: NP does not have p-measure 0.
2. The pseudo-NP hypothesis: there is an NP language that can be
distinguished from any DTIME(2^n^epsilon) language by an ...
more >>>
Under the assumption that NP does not have p-measure 0, we
investigate reductions to NP-complete sets and prove the following:
- Adaptive reductions are more powerful than nonadaptive
reductions: there is a problem that is Turing-complete for NP but
not truth-table-complete.
- Strong nondeterministic reductions are more powerful ... more >>>
We establish a relationship between the online mistake-bound model of learning and resource-bounded dimension. This connection is combined with the Winnow algorithm to obtain new results about the density of hard sets under adaptive reductions. This improves previous work of Fu (1995) and Lutz and Zhao (2000), and solves one ... more >>>
We apply recent results on extracting randomness from independent
sources to ``extract'' Kolmogorov complexity. For any $\alpha,
\epsilon > 0$, given a string $x$ with $K(x) > \alpha|x|$, we show
how to use a constant number of advice bits to efficiently
compute another string $y$, $|y|=\Omega(|x|)$, with $K(y) >
(1-\epsilon)|y|$. ...
more >>>
Constructive dimension and constructive strong dimension are effectivizations of the Hausdorff and packing dimensions, respectively. Each infinite binary sequence A is assigned a dimension dim(A) in [0,1] and a strong dimension Dim(A) in [0,1].
Let DIM^alpha and DIMstr^alpha be the classes of all sequences of dimension alpha and of strong ... more >>>
Bennett and Gill (1981) proved that P^A != NP^A relative to a
random oracle A, or in other words, that the set
O_[P=NP] = { A | P^A = NP^A }
has Lebesgue measure 0. In contrast, we show that O_[P=NP] has
Hausdorff dimension 1.
... more >>>
Scaled dimension has been introduced by Hitchcock et al (2003) in order to quantitatively distinguish among classes such as SIZE(2^{a n}) and SIZE(2^{n^{a}}) that have trivial dimension and measure in ESPACE.
more >>>The Turing and many-one completeness notions for $\NP$ have been
previously separated under {\em measure}, {\em genericity}, and {\em
bi-immunity} hypotheses on NP. The proofs of all these results rely
on the existence of a language in NP with almost everywhere hardness.
In this paper we separate the same NP-completeness ... more >>>
Derandomization techniques are used to show that at least one of the
following holds regarding the size of the counting complexity class
SPP.
1. SPP has p-measure 0.
2. PH is contained in SPP.
In other words, SPP is small by being a negligible subset of
exponential time or large ...
more >>>