Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > LIANNA HAMBARDZUMYAN:
All reports by Author Lianna Hambardzumyan:

TR24-064 | 1st April 2024
Yuting Fang, Lianna Hambardzumyan, Nathaniel Harms, Pooya Hatami

No Complete Problem for Constant-Cost Randomized Communication

We prove that the class of communication problems with public-coin randomized constant-cost protocols, called $BPP^0$, does not contain a complete problem. In other words, there is no randomized constant-cost problem $Q \in BPP^0$, such that all other problems $P \in BPP^0$ can be computed by a constant-cost deterministic protocol with ... more >>>


TR23-138 | 12th September 2023
Lianna Hambardzumyan, Toniann Pitassi, Suhail Sherif, Morgan Shirley, Adi Shraibman

An improved protocol for ExactlyN with more than 3 players

The ExactlyN problem in the number-on-forehead (NOF) communication setting asks $k$ players, each of whom can see every input but their own, if the $k$ input numbers add up to $N$. Introduced by Chandra, Furst and Lipton in 1983, ExactlyN is important for its role in understanding the strength of ... more >>>


TR21-066 | 5th May 2021
Lianna Hambardzumyan, Hamed Hatami, Pooya Hatami

Dimension-free Bounds and Structural Results in Communication Complexity

The purpose of this article is to initiate a systematic study of dimension-free relations between basic communication and query complexity measures and various matrix norms. In other words, our goal is to obtain inequalities that bound a parameter solely as a function of another parameter. This is in contrast to ... more >>>


TR19-029 | 20th February 2019
Yuval Filmus, Lianna Hambardzumyan, Hamed Hatami, Pooya Hatami, David Zuckerman

Biasing Boolean Functions and Collective Coin-Flipping Protocols over Arbitrary Product Distributions

The seminal result of Kahn, Kalai and Linial shows that a coalition of $O(\frac{n}{\log n})$ players can bias the outcome of *any* Boolean function $\{0,1\}^n \to \{0,1\}$ with respect to the uniform measure. We extend their result to arbitrary product measures on $\{0,1\}^n$, by combining their argument with a completely ... more >>>




ISSN 1433-8092 | Imprint