An $n$-bit boolean function is resilient to coalitions of size $q$
if no fixed set of $q$ bits is likely to influence the value of the
function when the other $n-q$ bits are chosen uniformly at random,
even though the function is nearly balanced. We construct explicit
functions resilient to ...
more >>>
A survey on correlation bounds against polynomials.
more >>>We revisit the problem of constructing explicit pseudorandom generators
that fool with error $\epsilon$ degree-$d$ polynomials in $n$ variables
over the field $F_q$, in the case of large $q$. Previous constructions
either have seed length at least $2^{d}\log q$, and thus are only non-trivial
when the degree is less than ...
more >>>
We study the fundamental challenge of exhibiting explicit functions that have small correlation with low-degree polynomials over $\mathbb{F}_{2}$. Our main contributions include:
1. In STOC 2020, CHHLZ introduced a new technique to prove correlation bounds. Using their technique they established new correlation bounds for low-degree polynomials. They conjectured that their ... more >>>
Let $G$ be a group such that any non-trivial representation has dimension
at least $d$. Let $X=(X_{1},X_{2},\ldots,X_{t})$ and $Y=(Y_{1},Y_{2},\ldots,Y_{t})$
be distributions over $G^{t}$. Suppose that $X$ is independent from
$Y$. We show that for any $g\in G$ we have
\[
\left|\mathbb{P}[X_{1}Y_{1}X_{2}Y_{2}\cdots X_{t}Y_{t}=g]-1/|G|\right|\le\frac{|G|^{2t-1}}{d^{t-1}}\sqrt{\mathbb{E}_{h\in G^{t}}X(h)^{2}}\sqrt{\mathbb{E}_{h\in G^{t}}Y(h)^{2}}.
\]
Our results generalize, improve, and ...
more >>>
The hardness vs.~randomness paradigm aims to explicitly construct pseudorandom generators $G:\{0,1\}^r \to \{0,1\}^m$ that fool circuits of size $m$, assuming the existence of explicit hard functions. A ``high-end PRG'' with seed length $r=O(\log m)$ (implying BPP=P) was achieved in a seminal work of Impagliazzo and Wigderson (STOC 1997), assuming \textsc{the ... more >>>
We study a simple and general template for constructing affine extractors by composing a linear transformation with resilient functions. Using this we show that good affine extractors can be computed by non-explicit circuits of various types, including AC0-Xor circuits: AC0 circuits with a layer of parity gates at the input. ... more >>>
We analyze the Fourier growth, i.e. the $L_1$ Fourier weight at level $k$ (denoted $L_{1,k}$), of various well-studied classes of "structured" $\mathbb{F}_2$-polynomials. This study is motivated by applications in pseudorandomness, in particular recent results and conjectures due to [CHHL19,CHLT19,CGLSS20] which show that upper bounds on Fourier growth (even at ... more >>>
Suppose that a distribution $S$ can be approximately sampled by an
efficient cell-probe algorithm. It is shown to be possible to restrict
the input to the algorithm so that its output distribution is still
not too far from $S$, and at the same time many output coordinates
are almost pairwise ...
more >>>
We initiate a systematic study of mixing in non-quasirandom groups.
Let $A$ and $B$ be two independent, high-entropy distributions over
a group $G$. We show that the product distribution $AB$ is statistically
close to the distribution $F(AB)$ for several choices of $G$ and
$F$, including:
(1) $G$ is the affine ... more >>>
It is shown that there exists $f : \{0,1\}^{n/2} \times \{0,1\}^{n/2} \to \{0,1\}$ in E$^\mathbf{NP}$ such that for every $2^{n/2} \times 2^{n/2}$ matrix $M$ of rank $\le \rho$ we have $\P_{x,y}[f(x,y)\ne M_{x,y}] \ge 1/2-2^{-\Omega(k)}$, where $k \leq \Theta(\sqrt{n})$ and $\log \rho \leq \delta n/k(\log n + k)$ for a sufficiently ... more >>>
Recently several conjectures were made regarding the Fourier spectrum of low-degree polynomials. We show that these conjectures imply new correlation bounds for functions related to Majority. Then we prove several new results on correlation bounds which aim to, but don't, resolve the conjectures. In particular, we prove several new results ... more >>>
We prove new lower bounds for computing some functions $f:\{0,1\}^{n}\to\{0,1\}$ in $E^{NP}$ by polynomials modulo $2$, constant-depth circuits with parity gates ($AC^{0}[\oplus]$), and related classes. Results include:
(1) $\Omega(n/\log^{2}n)$ lower bounds probabilistic degree. This is optimal up to a factor $O(\log^{2}n)$. The previous best lower bound was $\Omega(\sqrt{n})$ proved in ... more >>>
We show that there are degree-$d$ polynomials over $\mathbb{F}_{2}$ with
correlation $\Omega(d/\sqrt{n})$ with the majority function on $n$
bits. This matches the $O(d/\sqrt{n})$ bound by Smolensky.
We prove that the Or function on $n$ bits can be point-wise approximated with error $\eps$ by a polynomial of degree $O(k)$ and weight $2^{O(n \log (1/\eps)/k)}$, for any $k \geq \sqrt{n \log 1/\eps}$. This result is tight for all $k$. Previous results were either not tight or had $\eps ... more >>>
We exhibit a pseudorandom generator with nearly quadratic stretch for randomized Turing machines, which have a one-way random tape and a two-way work tape. This is the first generator for this model. Its stretch is essentially the best possible given current lower bounds. We use the generator to prove a ... more >>>
We prove that for every distribution $D$ on $n$ bits with Shannon
entropy $\ge n-a$ at most $O(2^{d}a\log^{d+1}g)/\gamma{}^{5}$ of
the bits $D_{i}$ can be predicted with advantage $\gamma$ by an
AC$^{0}$ circuit of size $g$ and depth $d$ that is a function of
all the bits of $D$ except $D_{i}$. ...
more >>>
Let $f:\{0,1\}^{n}\to\{0,1\}^{m}$ be a function computable by a circuit with
unbounded fan-in, arbitrary gates, $w$ wires and depth $d$. With
a very simple argument we show that the $m$-query problem corresponding
to $f$ has data structures with space $s=n+r$ and time $(w/r)^{d}$,
for any $r$. As a consequence, in the ...
more >>>
Research in the 80's and 90's showed how to construct a pseudorandom
generator from a function that is hard to compute on more than $99\%$
of the inputs. A more recent line of works showed however that if
the generator has small error, then the proof of correctness cannot
be ...
more >>>
We study how well can $q$-query decision trees distinguish between the
following two distributions: (i) $R=(R_1,\ldots,R_N)$ that are i.i.d.
variables, (ii) $X=(R|R \in A)$ where $A$ is an event s.t. $\Pr[R \in A] \ge
2^{-a}$. We prove two lemmas:
- Forbidden-set lemma: There exists $B \subseteq [N]$ of
size ...
more >>>
We show that for every small AC$^{0}$ circuit
$C:\{0,1\}^{\ell}\to\{0,1\}^{m}$ there exists a multiset $S$ of
$2^{m-m^{\Omega(1)}}$ restrictions that preserve the output distribution of
$C$ and moreover \emph{polarize min-entropy: }the restriction of $C$ to
any $r\in S$ either is constant or has polynomial min-entropy. This
structural result is then applied to ...
more >>>
We construct pseudorandom generators with improved seed length for
several classes of tests. First we consider the class of read-once
polynomials over GF(2) in $m$ variables. For error $\e$ we obtain seed
length $\tilde O (\log(m/\e)) \log(1/\e)$, where $\tilde O$ hides lower-order
terms. This is optimal up to the factor ...
more >>>
A map $f:[n]^{\ell}\to[n]^{n}$ has locality $d$ if each output symbol
in $[n]=\{1,2,\ldots,n\}$ depends only on $d$ of the $\ell$ input
symbols in $[n]$. We show that the output distribution of a $d$-local
map has statistical distance at least $1-2\cdot\exp(-n/\log^{c^{d}}n)$
from a uniform permutation of $[n]$. This seems to be the ...
more >>>
Let $X_{m, \eps}$ be the distribution over $m$ bits $(X_1, \ldots, X_m)$
where the $X_i$ are independent and each $X_i$ equals $1$ with
probability $(1+\eps)/2$ and $0$ with probability $(1-\eps)/2$. We
consider the smallest value $\eps^*$ of $\eps$ such that the distributions
$X_{m,\eps}$ and $X_{m,0}$ can be distinguished with constant
more >>>
Let $D$ be a $b$-wise independent distribution over
$\{0,1\}^m$. Let $E$ be the ``noise'' distribution over
$\{0,1\}^m$ where the bits are independent and each bit is 1
with probability $\eta/2$. We study which tests $f \colon
\{0,1\}^m \to [-1,1]$ are $\e$-fooled by $D+E$, i.e.,
$|\E[f(D+E)] - \E[f(U)]| \le \e$ where ...
more >>>
Abstract A map $f:{0,1}^{n}\to {0,1}^{n}$ has locality t if every output bit of f depends only on t input bits. Arora, Steurer, and Wigderson (2009) ask if there exist bounded-degree expander graphs on $2^{n}$ nodes such that the neighbors of a node $x\in {0,1}^{n}$ can be computed by maps of ... more >>>
Party $A_i$ of $k$ parties $A_1,\dots,A_k$ receives on
its forehead a $t$-tuple $(a_{i1},\dots,a_{it})$ of
elements from the group $G=\text{SL}(2,q)$. The parties
are promised that the interleaved product $a_{11}\dots
a_{k1}a_{12}\dots a_{k2}\dots a_{1t}\dots a_{kt}$ is
equal either to the identity $e$ or to some other fixed
element $g\in G$. Their goal is ...
more >>>
Let $k=k(n)$ be the largest integer such that there
exists a $k$-wise uniform distribution over $\zo^n$ that
is supported on the set $S_m := \{x \in \zo^n : \sum_i
x_i \equiv 0 \bmod m\}$, where $m$ is any integer. We
show that $\Omega(n/m^2 \log m) \le k \le 2n/m + ...
more >>>
This note proves the existence of a quadratic GF(2) map
$p : \{0,1\}^n \to \{0,1\}$ such that no constant-depth circuit
of size $\poly(n)$ can sample the distribution $(u,p(u))$
for uniform $u$.
We say that a function $f\colon \Sigma^n \to \{0, 1\}$ is $\epsilon$-fooled by $k$-wise indistinguishability if $f$ cannot distinguish with advantage $\epsilon$ between any two distributions $\mu$ and $\nu$ over $\Sigma^n$ whose projections to any $k$ symbols are identical. We study the class of functions $f$ that are fooled by ... more >>>
Alice receives a tuple $(a_1,\ldots,a_t)$ of $t$ elements
from the group $G = \text{SL}(2,q)$. Bob similarly
receives a tuple $(b_1,\ldots,b_t)$. They are promised
that the interleaved product $\prod_{i \le t} a_i b_i$
equals to either $g$ and $h$, for two fixed elements $g,h
\in G$. Their task is to decide ...
more >>>
We exhibit $\epsilon$-biased distributions $D$
on $n$ bits and functions $f\colon \{0,1\}^n
\to \{0,1\}$ such that the xor of two independent
copies ($D+D$) does not fool $f$, for any of the
following choices:
1. $\epsilon = 2^{-\Omega(n)}$ and $f$ is in P/poly;
2. $\epsilon = 2^{-\Omega(n/\log n)}$ and $f$ is ... more >>>
We consider randomness extraction by AC0 circuits. The main parameter, $n$, is the length of the source, and all other parameters are functions of it. The additional extraction parameters are the min-entropy bound $k=k(n)$, the seed length $r=r(n)$, the output length $m=m(n)$, and the (output) deviation bound $\epsilon=\epsilon(n)$.
For $k ... more >>>
We study which functions can be computed by efficient circuits whose gate connections are very easy to compute. We give quasilinear-size circuits for sorting whose connections can be computed by decision trees with depth logarithmic in the length of the gate description. We also show that NL has NC$^2$ circuits ... more >>>
We construct a PCP for NTIME(2$^n$) with constant
soundness, $2^n \poly(n)$ proof length, and $\poly(n)$
queries where the verifier's computation is simple: the
queries are a projection of the input randomness, and the
computation on the prover's answers is a 3CNF. The
previous upper bound for these two computations was
more >>>
We draw two incomplete, biased maps of challenges in
computational complexity lower bounds. Our aim is to put
these challenges in perspective, and to present some
connections which do not seem widely known.
We reduce non-deterministic time $T \ge 2^n$ to a 3SAT
instance $\phi$ of size $|\phi| = T \cdot \log^{O(1)} T$
such that there is an explicit circuit $C$ that on input
an index $i$ of $\log |\phi|$ bits outputs the $i$th
clause, and each output bit of $C$ depends on ...
more >>>
We show that if one can solve 3SUM on a set of size $n$
in time $n^{1+\epsilon}$ then one can list $t$ triangles in a
graph with $m$ edges in time $\tilde
O(m^{1+\epsilon}t^{1/3+\epsilon'})$ for any $\epsilon' > 0$. This is a
reversal of Patrascu's reduction from 3SUM to
listing triangles ...
more >>>
We show how to efficiently compile any given circuit $C$
into a leakage-resistant circuit $\widehat{C}$ such that any
function on the wires of $\widehat{C}$ that leaks information
during a computation $\widehat{C}(x)$ yields advantage in
computing the product of $|\widehat{C}|^{\Omega(1)}$ elements
of the alternating group $A_u$. In combination with new
compression ...
more >>>
We show that degree-$d$ block-symmetric polynomials in
$n$ variables modulo any odd $p$ correlate with parity
exponentially better than degree-$d$ symmetric
polynomials, if $n \ge c d^2 \log d$ and $d \in [0.995
\cdot p^t - 1,p^t)$ for some $t \ge 1$. For these
infinitely many degrees, our result ...
more >>>
We highlight the special case of Valiant's rigidity
problem in which the low-rank matrices are truth-tables
of sparse polynomials. We show that progress on this
special case entails that Inner Product is not computable
by small $\acz$ circuits with one layer of parity gates
close to the inputs. We then ...
more >>>
We highlight the challenge of proving correlation bounds
between boolean functions and integer-valued polynomials,
where any non-boolean output counts against correlation.
We prove that integer-valued polynomials of degree $\frac 12
\log_2 \log_2 n$ have zero correlation with parity. Such a
result is false for modular and threshold polynomials.
Its proof ...
more >>>
Common presentations of the NP-completeness of SAT suffer
from two drawbacks which hinder the scope of this
flagship result. First, they do not apply to machines
equipped with random-access memory, also known as
direct-access memory, even though this feature is
critical in basic algorithms. Second, they incur a
quadratic blow-up ...
more >>>
We obtain the first deterministic randomness extractors
for $n$-bit sources with min-entropy $\ge n^{1-\alpha}$
generated (or sampled) by single-tape Turing machines
running in time $n^{2-16 \alpha}$, for all sufficiently
small $\alpha > 0$. We also show that such machines
cannot sample a uniform $n$-bit input to the Inner
Product function ...
more >>>
We study the complexity of black-box constructions of
pseudorandom functions (PRF) from one-way functions (OWF)
that are secure against non-uniform adversaries. We show
that if OWF do not exist, then given as an oracle any
(inefficient) hard-to-invert function, one can compute a
PRF in polynomial time with only $k(n)$ oracle ...
more >>>
Suppose each of $k \le n^{o(1)}$ players holds an $n$-bit number $x_i$ in its hand. The players wish to determine if $\sum_{i \le k} x_i = s$. We give a public-coin protocol with error $1\%$ and communication $O(k \lg k)$. The communication bound is independent of $n$, and for $k ... more >>>
We bound the minimum number $w$ of wires needed to compute any (asymptotically good) error-correcting code
$C:\{0,1\}^{\Omega(n)} \to \{0,1\}^n$ with minimum distance $\Omega(n)$,
using unbounded fan-in circuits of depth $d$ with arbitrary gates. Our main results are:
(1) If $d=2$ then $w = \Theta(n ({\log n/ \log \log n})^2)$.
(2) ... more >>>
The 3SUM problem asks if there are three integers $a,b,c$ summing to $0$ in a given set of $n$ integers of magnitude poly($n$). Patrascu (STOC '10) reduces solving 3SUM in time $n^{2-\Omega(1)}$ to listing $m$ triangles in a graph with $m$ edges in time $m^{4/3-\Omega(1)}$.
In this note we present ...
more >>>
We put forth several simple candidate pseudorandom functions f_k : {0,1}^n -> {0,1} with security (a.k.a. hardness) 2^n that are inspired by the AES block-cipher by Daemen and Rijmen (2000). The functions are computable more efficiently, and use a shorter key (a.k.a. seed) than previous
constructions. In particular, we ...
more >>>
We obtain the first deterministic extractors for sources generated (or sampled) by small circuits of bounded depth. Our main results are:
(1) We extract $k (k/nd)^{O(1)}$ bits with exponentially small error from $n$-bit sources of min-entropy $k$ that are generated by functions $f : \{0,1\}^\ell \to \{0,1\}^n$ where each output ... more >>>
We report on some initial results of a brute-force search for determining the maximum correlation between degree-$d$ polynomials modulo $p$ and the $n$-bit mod $q$ function. For various settings of the parameters $n,d,p,$ and $q$, our results indicate that symmetric polynomials yield the maximum correlation. This contrasts with the previously-analyzed ... more >>>
The {\em hybrid argument}
allows one to relate
the {\em distinguishability} of a distribution (from
uniform) to the {\em
predictability} of individual bits given a prefix. The
argument incurs a loss of a factor $k$ equal to the
bit-length of the
distributions: $\epsilon$-distinguishability implies only
$\epsilon/k$-predictability. ...
more >>>
We show that the promise problem of distinguishing $n$-bit strings of hamming weight $\ge 1/2 + \Omega(1/\log^{d-1} n)$ from strings of weight $\le 1/2 - \Omega(1/\log^{d-1} n)$ can be solved by explicit, randomized (unbounded-fan-in) poly(n)-size depth-$d$ circuits with error $\le 1/3$, but cannot be solved by deterministic poly(n)-size depth-$(d+1)$ circuits, ... more >>>
We study a variant of the classical circuit-lower-bound problems: proving lower bounds for sampling distributions given random bits. We prove a lower bound of $1-1/n^{\Omega(1)}$ on the statistical distance between (i) the output distribution of any small constant-depth (a.k.a.~$\mathrm{AC}^0$) circuit $f : \{0,1\}^{\mathrm{poly}(n)} \to \{0,1\}^n$, and (ii) the uniform distribution ... more >>>
Complexity theory typically studies the complexity of computing a function $h(x) : \{0,1\}^n \to \{0,1\}^m$ of a given input $x$. We advocate the study of the complexity of generating the distribution $h(x)$ for uniform $x$, given random bits.
Our main results are:
\begin{itemize}
\item There are explicit $AC^0$ circuits of ...
more >>>
We prove that to store n bits x so that each
prefix-sum query Sum(i) := sum_{k < i} x_k can be answered
by non-adaptively probing q cells of log n bits, one needs
memory > n + n/log^{O(q)} n.
Our bound matches a recent upper bound of n +
n/log^{Omega(q)} ...
more >>>
We prove that to store n bits x so that each
prefix-sum query Sum(i) := sum_{k < i} x_k can be answered
by non-adaptively probing q cells of log n bits, one needs
memory > n + n/log^{O(q)} n.
Our bound matches a recent upper bound of n +
n/log^{Omega(q)} ...
more >>>
We show that any distribution on {-1,1}^n that is k-wise independent fools any halfspace h with error \eps for k = O(\log^2(1/\eps)/\eps^2). Up to logarithmic factors, our result matches a lower bound by Benjamini, Gurel-Gurevich, and Peled (2007) showing that k = \Omega(1/(\eps^2 \cdot \log(1/\eps))). Using standard constructions of k-wise ... more >>>
We prove lower bounds on the redundancy necessary to
represent a set $S$ of objects using a number of bits
close to the information-theoretic minimum $\log_2 |S|$,
while answering various queries by probing few bits. Our
main results are:
\begin{itemize}
\item To represent $n$ ternary values $t \in
\zot^n$ in ...
more >>>
We prove that the sum of $d$ small-bias generators $L
: \F^s \to \F^n$ fools degree-$d$ polynomials in $n$
variables over a prime field $\F$, for any fixed
degree $d$ and field $\F$, including $\F = \F_2 =
{0,1}$.
Our result improves on both the work by Bogdanov and
Viola ...
more >>>
Hardness amplification is the fundamental task of
converting a $\delta$-hard function $f : {0,1}^n ->
{0,1}$ into a $(1/2-\eps)$-hard function $Amp(f)$,
where $f$ is $\gamma$-hard if small circuits fail to
compute $f$ on at least a $\gamma$ fraction of the
inputs. Typically, $\eps,\delta$ are small (and
$\delta=2^{-k}$ captures the case ...
more >>>
We give a self-contained exposition of selected results in additive
combinatorics over the group {0,1}^n. In particular, we prove the
celebrated theorems known as the Balog-Szemeredi-Gowers theorem ('94 and '98) and
the
Freiman-Ruzsa theorem ('73 and '99), leading to the remarkable result
by Samorodnitsky ('07) that linear transformations are efficiently ...
more >>>
We present a new approach to constructing pseudorandom generators that fool low-degree polynomials over finite fields, based on the Gowers norm. Using this approach, we obtain the following main constructions of explicitly computable generators $G : \F^s \to \F^n$ that fool polynomials over a prime field $\F$:
\begin{enumerate}
\item a ...
more >>>
In this paper we study the one-way multi-party communication model,
in which every party speaks exactly once in its turn. For every
fixed $k$, we prove a tight lower bound of
$\Omega{n^{1/(k-1)}}$ on the probabilistic communication
complexity of pointer jumping in a $k$-layered tree, where the
pointers of the $i$-th ...
more >>>
We study the correlation between low-degree GF(2) polynomials p and explicit functions. Our main results are the following:
(I) We prove that the Mod_m unction on n bits has correlation at most exp(-Omega(n/4^d)) with any GF(2) polynomial of degree d, for any fixed odd integer m. This improves on the ... more >>>
We prove several new results regarding the relationship between probabilistic time, BPTime(t), and alternating time, \Sigma_{O(1)} Time(t). Our main results are the following:
1) We prove that BPTime(t) \subseteq \Sigma_3 Time(t polylog(t)). Previous results show that BPTime(t) \subseteq \Sigma_2 Time(t^2 log t) (Sipser and Gacs, STOC '83; Lautemann, IPL '83) ... more >>>
We study the complexity of arithmetic in finite fields of characteristic two, $\F_{2^n}$.
We concentrate on the following two problems:
Iterated Multiplication: Given $\alpha_1, \alpha_2,..., \alpha_t \in \F_{2^n}$, compute $\alpha_1 \cdot \alpha_2 \cdots \alpha_t \in \F_{2^n}$.
Exponentiation: Given $\alpha \in \F_{2^n}$ and a $t$-bit integer $k$, compute $\alpha^k \in \F_{2^n}$.
... more >>>We exhibit an explicitly computable `pseudorandom' generator stretching $l$ bits into $m(l) = l^{\Omega(\log l)}$ bits that look random to constant-depth circuits of size $m(l)$ with $\log m(l)$ arbitrary symmetric gates (e.g. PARITY, MAJORITY). This improves on a generator by Luby, Velickovic and Wigderson (ISTCS '93) that achieves the same ... more >>>
We study the complexity of computing $k$-wise independent and
$\epsilon$-biased generators $G : \{0,1\}^n \to \{0,1\}^m$.
Specifically, we refer to the complexity of computing $G$ \emph{explicitly}, i.e.
given $x \in \{0,1\}^n$ and $i \in \{0,1\}^{\log m}$, computing the $i$-th output bit of $G(x)$.
Mansour, Nisan and Tiwari (1990) show that ...
more >>>
We revisit the problem of hardness amplification in $\NP$, as
recently studied by O'Donnell (STOC `02). We prove that if $\NP$
has a balanced function $f$ such that any circuit of size $s(n)$
fails to compute $f$ on a $1/\poly(n)$ fraction of inputs, then
$\NP$ has a function $f'$ such ...
more >>>
We study pseudorandom generator (PRG) constructions $G^f : {0,1}^l \to {0,1}^{l+s}$ from one-way functions $f : {0,1}^n \to {0,1}^m$. We consider PRG constructions of the form $G^f(x) = C(f(q_{1}) \ldots f(q_{poly(n)}))$
where $C$ is a polynomial-size constant depth circuit
and $C$ and the $q$'s are generated from $x$ arbitrarily.
more >>>
We study the complexity of building
pseudorandom generators (PRGs) from hard functions.
We show that, starting from a function f : {0,1}^l -> {0,1} that
is mildly hard on average, i.e. every circuit of size 2^Omega(l)
fails to compute f on at least a 1/poly(l)
fraction of inputs, we can ...
more >>>