Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > PETER BRO MILTERSEN:
All reports by Author Peter Bro Miltersen:

TR13-107 | 7th August 2013
Gil Cohen, Ivan Bjerre Damgard, Yuval Ishai, Jonas Kolker, Peter Bro Miltersen, Ran Raz, Ron Rothblum

Efficient Multiparty Protocols via Log-Depth Threshold Formulae

We put forward a new approach for the design of efficient multiparty protocols:

1. Design a protocol for a small number of parties (say, 3 or 4) which achieves
security against a single corrupted party. Such protocols are typically easy
to construct as they may employ techniques that do not ... more >>>


TR06-004 | 6th January 2006
Jesper Torp Kristensen, Peter Bro Miltersen

Finding small OBDDs for incompletely specified truth tables is hard

We present an efficient reduction mapping undirected graphs
G with n = 2^k vertices for integers k
to tables of partially specified Boolean functions
g: {0,1}^(4k+1) -> {0,1,*} so that for any integer m,
G has a vertex colouring using m colours if and only if g ... more >>>


TR05-037 | 8th April 2005
Eric Allender, Peter B├╝rgisser, Johan Kjeldgaard-Pedersen, Peter Bro Miltersen

On the Complexity of Numerical Analysis

Revisions: 1 , Comments: 1

We study two quite different approaches to understanding the complexity
of fundamental problems in numerical analysis. We show that both hinge
on the question of understanding the complexity of the following problem,
which we call PosSLP:
Given a division-free straight-line program
producing an integer N, decide whether N>0.
more >>>


TR05-032 | 16th March 2005
Gudmund Skovbjerg Frandsen, Peter Bro Miltersen

Reviewing Bounds on the Circuit Size of the Hardest Functions

In this paper we review the known bounds for $L(n)$, the circuit size
complexity of the hardest Boolean function on $n$ input bits. The
best known bounds appear to be $$\frac{2^n}{n}(1+\frac{\log
n}{n}-O(\frac{1}{n})) \leq L(n) \leq\frac{2^n}{n}(1+3\frac{\log
n}{n}+O(\frac{1}{n}))$$ However, the bounds do not seem to be
explicitly stated in the literature. We ... more >>>


TR03-017 | 27th March 2003
Peter Bro Miltersen, Jaikumar Radhakrishnan, Ingo Wegener

On Converting CNF to DNF

The best-known representations of boolean functions f are those of disjunctions of terms (DNFs) and as conjuctions of clauses (CNFs). It is convenient to define the DNF size of f as the minimal number of terms in a DNF representing f and the CNF size as the minimal number of ... more >>>


TR02-066 | 24th October 2002
Kristoffer Arnsfelt Hansen, Peter Bro Miltersen, V Vinay

Circuits on Cylinders

We consider the computational power of constant width polynomial
size cylindrical circuits and nondeterministic branching programs.
We show that every function computed by a Pi2 o MOD o AC0 circuit
can also be computed by a constant width polynomial size cylindrical
nondeterministic branching program (or cylindrical circuit) and
that ... more >>>


TR97-044 | 26th September 1997
David Mix Barrington, Chi-Jen Lu, Peter Bro Miltersen, Sven Skyum

Searching constant width mazes captures the AC^0 hierarchy


We show that searching a width k maze is complete for \Pi_k, i.e., for
the k'th level of the AC^0 hierarchy. Equivalently, st-connectivity
for width k grid graphs is complete for \Pi_k. As an application,
we show that there is a data structure solving dynamic st-connectivity
for constant ... more >>>




ISSN 1433-8092 | Imprint