Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > IAN MERTZ:
All reports by Author Ian Mertz:

TR24-138 | 8th September 2024
Marten Folkertsma, Ian Mertz, Florian Speelman, Quinten Tupker

Fully Characterizing Lossy Catalytic Computation

A catalytic machine is a model of computation where a traditional space-bounded machine is augmented with an additional, significantly larger, "catalytic" tape, which, while being available as a work tape, has the caveat of being initialized with an arbitrary string, which must be preserved at the end of the computation. ... more >>>


TR24-106 | 17th June 2024
James Cook, Jiatu Li, Ian Mertz, Edward Pyne

The Structure of Catalytic Space: Capturing Randomness and Time via Compression

In the catalytic logspace ($CL$) model of (Buhrman et.~al.~STOC 2013), we are given a small work tape, and a larger catalytic tape that has an arbitrary initial configuration. We may edit this tape, but it must be exactly restored to its initial configuration at the completion of the computation. This ... more >>>


TR23-179 | 18th November 2023
Ian Mertz

Reusing Space: Techniques and Open Problems

In the world of space-bounded complexity, there is a strain of results showing that space can, somewhat paradoxically, be used for multiple purposes at once. Touchstone results include Barrington’s Theorem and the recent line of work on catalytic computing. We refer to such techniques, in contrast to the usual notion ... more >>>


TR23-174 | 15th November 2023
James Cook, Ian Mertz

Tree Evaluation is in Space O(log n · log log n)

The Tree Evaluation Problem ($TreeEval$) (Cook et al. 2009) is a central candidate for separating polynomial time ($P$) from logarithmic space ($L$) via composition. While space lower bounds of $\Omega(\log^2 n)$ are known for multiple restricted models, it was recently shown by Cook and Mertz (2020) that TreeEval can be ... more >>>


TR15-018 | 31st January 2015
Eric Allender, Ian Mertz

Complexity of Regular Functions

Revisions: 1

We give complexity bounds for various classes of functions computed by cost register automata.

more >>>

TR14-122 | 30th September 2014
Eric Allender, Anna Gal, Ian Mertz

Dual VP Classes

Revisions: 2

We consider arithmetic complexity classes that are in some sense dual to the classes VP(Fp) that were introduced by Valiant. This provides new characterizations of the complexity classes ACC^1 and TC^1, and also provides a compelling example of
a class of high-degree polynomials that can be simulated via arithmetic circuits ... more >>>




ISSN 1433-8092 | Imprint