A catalytic machine is a model of computation where a traditional space-bounded machine is augmented with an additional, significantly larger, "catalytic" tape, which, while being available as a work tape, has the caveat of being initialized with an arbitrary string, which must be preserved at the end of the computation. ... more >>>
In the catalytic logspace ($CL$) model of (Buhrman et.~al.~STOC 2013), we are given a small work tape, and a larger catalytic tape that has an arbitrary initial configuration. We may edit this tape, but it must be exactly restored to its initial configuration at the completion of the computation. This ... more >>>
In the world of space-bounded complexity, there is a strain of results showing that space can, somewhat paradoxically, be used for multiple purposes at once. Touchstone results include Barrington’s Theorem and the recent line of work on catalytic computing. We refer to such techniques, in contrast to the usual notion ... more >>>
The Tree Evaluation Problem ($TreeEval$) (Cook et al. 2009) is a central candidate for separating polynomial time ($P$) from logarithmic space ($L$) via composition. While space lower bounds of $\Omega(\log^2 n)$ are known for multiple restricted models, it was recently shown by Cook and Mertz (2020) that TreeEval can be ... more >>>
We give complexity bounds for various classes of functions computed by cost register automata.
more >>>We consider arithmetic complexity classes that are in some sense dual to the classes VP(Fp) that were introduced by Valiant. This provides new characterizations of the complexity classes ACC^1 and TC^1, and also provides a compelling example of
a class of high-degree polynomials that can be simulated via arithmetic circuits ...
more >>>