Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > JAMES COOK:
All reports by Author James Cook:

TR24-106 | 17th June 2024
James Cook, Jiatu Li, Ian Mertz, Edward Pyne

The Structure of Catalytic Space: Capturing Randomness and Time via Compression

In the catalytic logspace ($CL$) model of (Buhrman et.~al.~STOC 2013), we are given a small work tape, and a larger catalytic tape that has an arbitrary initial configuration. We may edit this tape, but it must be exactly restored to its initial configuration at the completion of the computation. This ... more >>>


TR23-174 | 15th November 2023
James Cook, Ian Mertz

Tree Evaluation is in Space O(log n ยท log log n)

The Tree Evaluation Problem ($TreeEval$) (Cook et al. 2009) is a central candidate for separating polynomial time ($P$) from logarithmic space ($L$) via composition. While space lower bounds of $\Omega(\log^2 n)$ are known for multiple restricted models, it was recently shown by Cook and Mertz (2020) that TreeEval can be ... more >>>


TR22-026 | 17th February 2022
James Cook, Ian Mertz

Trading Time and Space in Catalytic Branching Programs

An $m$-catalytic branching program (Girard, Koucky, McKenzie 2015) is a set of $m$ distinct branching programs for $f$ which are permitted to share internal (i.e. non-source non-sink) nodes. While originally introduced as a non-uniform analogue to catalytic space, this also gives a natural notion of amortized non-uniform space complexity for ... more >>>


TR21-054 | 14th April 2021
James Cook, Ian Mertz

Encodings and the Tree Evaluation Problem

We show that the Tree Evaluation Problem with alphabet size $k$ and height $h$ can be solved by branching programs of size $k^{O(h/\log h)} + 2^{O(h)}$. This answers a longstanding challenge of Cook et al. (2009) and gives the first general upper bound since the problem's inception.

more >>>

TR20-056 | 17th April 2020
James Cook, Ian Mertz

Catalytic Approaches to the Tree Evaluation Problem

The study of branching programs for the Tree Evaluation Problem, introduced by S. Cook et al. (TOCT 2012), remains one of the most promising approaches to separating L from P. Given a label in $[k]$ at each leaf of a complete binary tree and an explicit function in $[k]^2 \to ... more >>>


TR12-175 | 13th December 2012
James Cook, Omid Etesami, Rachel Miller, Luca Trevisan

On the One-Way Function Candidate Proposed by Goldreich

Revisions: 1

A function $f$ mapping $n$-bit strings to $m$-bit strings can be constructed from a bipartite graph with $n$ vertices on the left and $m$ vertices on the right having right-degree $d$ together with a predicate $P:\{0,1\}^d\rightarrow\{0,1\}$. The vertices on the left correspond to the bits of the input to the ... more >>>




ISSN 1433-8092 | Imprint