In the catalytic logspace ($CL$) model of (Buhrman et.~al.~STOC 2013), we are given a small work tape, and a larger catalytic tape that has an arbitrary initial configuration. We may edit this tape, but it must be exactly restored to its initial configuration at the completion of the computation. This ... more >>>
The Tree Evaluation Problem ($TreeEval$) (Cook et al. 2009) is a central candidate for separating polynomial time ($P$) from logarithmic space ($L$) via composition. While space lower bounds of $\Omega(\log^2 n)$ are known for multiple restricted models, it was recently shown by Cook and Mertz (2020) that TreeEval can be ... more >>>
An $m$-catalytic branching program (Girard, Koucky, McKenzie 2015) is a set of $m$ distinct branching programs for $f$ which are permitted to share internal (i.e. non-source non-sink) nodes. While originally introduced as a non-uniform analogue to catalytic space, this also gives a natural notion of amortized non-uniform space complexity for ... more >>>
We show that the Tree Evaluation Problem with alphabet size $k$ and height $h$ can be solved by branching programs of size $k^{O(h/\log h)} + 2^{O(h)}$. This answers a longstanding challenge of Cook et al. (2009) and gives the first general upper bound since the problem's inception.
more >>>The study of branching programs for the Tree Evaluation Problem, introduced by S. Cook et al. (TOCT 2012), remains one of the most promising approaches to separating L from P. Given a label in $[k]$ at each leaf of a complete binary tree and an explicit function in $[k]^2 \to ... more >>>
A function $f$ mapping $n$-bit strings to $m$-bit strings can be constructed from a bipartite graph with $n$ vertices on the left and $m$ vertices on the right having right-degree $d$ together with a predicate $P:\{0,1\}^d\rightarrow\{0,1\}$. The vertices on the left correspond to the bits of the input to the ... more >>>