The theory of Total Function NP (TFNP) and its subclasses says that, even if one is promised an efficiently verifiable proof exists for a problem, finding this proof can be intractable. Despite the success of the theory at showing intractability of problems such as computing Brouwer fixed points and Nash ... more >>>
We study the complexity of problems solvable in deterministic polynomial time with access to an NP or Quantum Merlin-Arthur (QMA)-oracle, such as $P^{NP}$ and $P^{QMA}$, respectively.
The former allows one to classify problems more finely than the Polynomial-Time Hierarchy (PH), whereas the latter characterizes physically motivated problems such as Approximate ...
more >>>