We study the communication complexity of multiplying $k\times t$
elements from the group $H=\text{SL}(2,q)$ in the number-on-forehead
model with $k$ parties. We prove a lower bound of $(t\log H)/c^{k}$.
This is an exponential improvement over previous work, and matches
the state-of-the-art in the area.
Relatedly, we show that the convolution ... more >>>
We prove several new results on the Hamming weight of bounded uniform and small-bias distributions.
We exhibit bounded-uniform distributions whose weight is anti-concentrated, matching existing concentration inequalities. This construction relies on a recent result in approximation theory due to Erdéyi (Acta Arithmetica 2016). In particular, we match the classical tail ... more >>>
We prove several new results about bounded uniform and small-bias distributions. A main message is that, small-bias, even perturbed with noise, does not fool several classes of tests better than bounded uniformity. We prove this for threshold tests, small-space algorithms, and small-depth circuits. In particular, we obtain small-bias distributions that
... more >>>We give new upper and lower bounds on the power of several restricted classes of arbitrary-order read-once branching programs (ROBPs) and standard-order ROBPs (SOBPs) that have received significant attention in the literature on pseudorandomness for space-bounded computation.
Regular SOBPs of length $n$ and width $\lfloor w(n+1)/2\rfloor$ can exactly simulate general ... more >>>
We analyze the Fourier growth, i.e. the $L_1$ Fourier weight at level $k$ (denoted $L_{1,k}$), of read-once regular branching programs.
We prove that every read-once regular branching program $B$ of width $w \in [1,\infty]$ with $s$ accepting states on $n$-bit inputs must have its $L_{1,k}$ bounded by
$$
\min\left\{ ...
more >>>