Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > JOSHUA GROCHOW:
All reports by Author Joshua Grochow:

TR17-158 | 23rd October 2017
Eric Allender, Joshua Grochow, Dieter van Melkebeek, Cris Moore, Andrew Morgan

Minimum Circuit Size, Graph Isomorphism, and Related Problems

We study the computational power of deciding whether a given truth-table can be described by a circuit of a given size (the Minimum Circuit Size Problem, or MCSP for short), and of the variant denoted as MKTP where circuit size is replaced by a polynomially-related Kolmogorov measure. All prior reductions ... more >>>


TR17-131 | 1st September 2017
Joshua Grochow, Cris Moore

Designing Strassen's algorithm

In 1969, Strassen shocked the world by showing that two n x n matrices could be multiplied in time asymptotically less than $O(n^3)$. While the recursive construction in his algorithm is very clear, the key gain was made by showing that 2 x 2 matrix multiplication could be performed with ... more >>>


TR17-009 | 19th January 2017
Joshua Grochow, Mrinal Kumar, Michael Saks, Shubhangi Saraf

Towards an algebraic natural proofs barrier via polynomial identity testing

We observe that a certain kind of algebraic proof - which covers essentially all known algebraic circuit lower bounds to date - cannot be used to prove lower bounds against VP if and only if what we call succinct hitting sets exist for VP. This is analogous to the Razborov-Rudich ... more >>>


TR16-162 | 18th October 2016
Joshua Grochow

NP-hard sets are not sparse unless P=NP: An exposition of a simple proof of Mahaney's Theorem, with applications

Mahaney's Theorem states that, assuming P $\neq$ NP, no NP-hard set can have a polynomially bounded number of yes-instances at each input length. We give an exposition of a very simple unpublished proof of Manindra Agrawal whose ideas appear in Agrawal-Arvind ("Geometric sets of low information content," Theoret. Comp. Sci., ... more >>>


TR15-171 | 28th October 2015
Joshua Grochow

Monotone projection lower bounds from extended formulation lower bounds

Revisions: 2 , Comments: 1

In this short note, we show that the permanent is not complete for non-negative polynomials in $VNP_{\mathbb{R}}$ under monotone p-projections. In particular, we show that Hamilton Cycle polynomial and the cut polynomials are not monotone p-projections of the permanent. To prove this we introduce a new connection between monotone projections ... more >>>


TR15-162 | 9th October 2015
Eric Allender, Joshua Grochow, Cris Moore

Graph Isomorphism and Circuit Size

Revisions: 1

We show that the Graph Automorphism problem is ZPP-reducible to MKTP, the problem of minimizing time-bounded Kolmogorov complexity. MKTP has previously been studied in connection with the Minimum Circuit Size Problem (MCSP) and is often viewed as essentially a different encoding of MCSP. All prior reductions to MCSP have applied ... more >>>


TR14-052 | 14th April 2014
Joshua Grochow, Toniann Pitassi

Circuit complexity, proof complexity, and polynomial identity testing

We introduce a new and very natural algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits ($VNP \neq VP$). As a ... more >>>


TR13-123 | 6th September 2013
Joshua Grochow, Youming Qiao

Algorithms for group isomorphism via group extensions and cohomology

The isomorphism problem for groups given by multiplication tables (GpI) is well-known to be solvable in n^O(log n) time, but only recently has there been significant progress towards polynomial time. For example, in 2012 Babai et al. (ICALP 2012) gave a polynomial-time algorithm for groups with no abelian normal subgroups. ... more >>>


TR11-168 | 9th December 2011
Joshua Grochow

Lie algebra conjugacy

We study the problem of matrix Lie algebra conjugacy. Lie algebras arise centrally in areas as diverse as differential equations, particle physics, group theory, and the Mulmuley--Sohoni Geometric Complexity Theory program. A matrix Lie algebra is a set $\mathcal{L}$ of matrices such that $A,B \in \mathcal{L}$ implies$AB - BA \in ... more >>>




ISSN 1433-8092 | Imprint