Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > ILYA VOLKOVICH:
All reports by Author Ilya Volkovich:

TR24-049 | 7th March 2024
Karthik Gajulapalli, Zeyong Li, Ilya Volkovich

Oblivious Classes Revisited: Lower Bounds and Hierarchies

In this work we study oblivious complexity classes. Among our results:
1) For each $k \in \mathbb{N}$, we construct an explicit language $L_k \in O_2P$ that cannot be computed by circuits of size $n^k$.
2) We prove a hierarchy theorem for $O_2TIME$. In particular, for any function $t:\mathbb{N} \rightarrow \mathbb{N}$ ... more >>>


TR24-041 | 1st March 2024
Pranav Bisht, Nikhil Gupta, Prajakta Nimbhorkar, Ilya Volkovich

Launching Identity Testing into (Bounded) Space

In this work, we initiate the study of the space complexity of the Polynomial Identity Testing problem (PIT).
First, we observe that the majority of the existing (time-)efficient ``blackbox'' PIT algorithms already give rise to space-efficient ``whitebox'' algorithms for the respective classes of arithmetic formulas via a space-efficient ... more >>>


TR23-109 | 21st July 2023
Pranav Bisht, Nikhil Gupta, Ilya Volkovich

Towards Identity Testing for Sums of Products of Read-Once and Multilinear Bounded-Read Formulae

An arithmetic formula is an arithmetic circuit where each gate has fan-out one. An \emph{arithmetic read-once formula} (ROF in short) is an arithmetic formula where each input variable labels at most one leaf. In this paper we present several efficient blackbox \emph{polynomial identity testing} (PIT) algorithms for some classes of ... more >>>


TR23-079 | 31st May 2023
Russell Impagliazzo, Valentine Kabanets, Ilya Volkovich

Mutual Empowerment between Circuit Obfuscation and Circuit Minimization

We study close connections between Indistinguishability Obfuscation ($IO$) and the Minimum Circuit Size Problem ($MCSP$), and argue that algorithms for one of $MCSP$ or $IO$ would empower the other one. Some of our main results are:

\begin{itemize}
\item If there exists a perfect (imperfect) $IO$ that is computationally secure ... more >>>


TR23-032 | 24th March 2023
Vishwas Bhargava, Shubhangi Saraf, Ilya Volkovich

Linear Independence, Alternants and Applications


We develop a new technique for analyzing linear independence of multivariate polynomials. One of our main technical contributions is a \emph{Small Witness for Linear Independence} (SWLI) lemma which states the following.
If the polynomials $f_1,f_2, \ldots, f_k \in \F[X]$ over $X=\{x_1, \ldots, x_n\}$ are $\F$-linearly independent then there exists ... more >>>


TR22-070 | 8th May 2022
Pranav Bisht, Ilya Volkovich

On Solving Sparse Polynomial Factorization Related Problems

Revisions: 6

In a recent result of Bhargava, Saraf and Volkovich [FOCS’18; JACM’20], the first sparsity bound for constant individual degree polynomials was shown. In particular, it was shown that any factor of a polynomial with at most $s$ terms and individual degree bounded by $d$ can itself have at most $s^{O(d^2\log ... more >>>


TR21-085 | 21st June 2021
Ilya Volkovich

The Final Nail in the Coffin of Statistically-Secure Obfuscator.

We present an elementary, self-contained proof of the result of Goldwasser and Rothblum [GR07] that the existence of a (perfect) statistically secure obfuscator implies a collapse of the polynomial hierarchy. In fact, we show that an existence of a weaker object implies a somewhat stronger statement. In addition, we extend ... more >>>


TR21-045 | 22nd March 2021
Vishwas Bhargava, Shubhangi Saraf, Ilya Volkovich

Reconstruction Algorithms for Low-Rank Tensors and Depth-3 Multilinear Circuits

We give new and efficient black-box reconstruction algorithms for some classes of depth-$3$ arithmetic circuits. As a consequence, we obtain the first efficient algorithm for computing the tensor rank and for finding the optimal tensor decomposition as a sum of rank-one tensors when then input is a {\it constant-rank} tensor. ... more >>>


TR21-009 | 1st February 2021
Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, Ilya Volkovich

One-way Functions and Partial MCSP

Revisions: 3 , Comments: 1

One-way functions (OWFs) are central objects of study in cryptography and computational complexity theory. In a seminal work, Liu and Pass (FOCS 2020) proved that the average-case hardness of computing time-bounded Kolmogorov complexity is equivalent to the existence of OWFs. It remained an open problem to establish such an equivalence ... more >>>


TR19-104 | 6th August 2019
Vishwas Bhargava, Shubhangi Saraf, Ilya Volkovich

Reconstruction of Depth-$4$ Multilinear Circuits

We present a deterministic algorithm for reconstructing multilinear $\Sigma\Pi\Sigma\Pi(k)$ circuits, i.e. multilinear depth-$4$ circuits with fan-in $k$ at the top $+$ gate. For any fixed $k$, given black-box access to a polynomial $f \in \mathbb{F}[x_{1},x_{2},\ldots ,x_{n}]$ computable by a multilinear $\Sigma\Pi\Sigma\Pi(k)$ circuit of size $s$, the algorithm runs in time ... more >>>


TR19-040 | 19th February 2019
Sanjana Kolisetty, Linh Le, Ilya Volkovich, Mihalis Yannakakis

The Complexity of Finding {$S$}-factors in Regular Graphs

A graph $G$ has an \emph{$S$-factor} if there exists a spanning subgraph $F$ of $G$ such that for all $v \in V: \deg_F(v) \in S$.
The simplest example of such factor is a $1$-factor, which corresponds to a perfect matching in a graph. In this paper we study the computational ... more >>>


TR18-130 | 16th July 2018
Vishwas Bhargava, Shubhangi Saraf, Ilya Volkovich

Deterministic Factorization of Sparse Polynomials with Bounded Individual Degree

In this paper we study the problem of deterministic factorization of sparse polynomials. We show that if $f \in \mathbb{F}[x_{1},x_{2},\ldots ,x_{n}]$ is a polynomial with $s$ monomials, with individual degrees of its variables bounded by $d$, then $f$ can be deterministically factored in time $s^{\poly(d) \log n}$. Prior to our ... more >>>


TR18-088 | 24th April 2018
Ilya Volkovich

A story of AM and Unique-SAT

Revisions: 1

In the seminal work of \cite{Babai85}, Babai have introduced \emph{Arthur-Merlin Protocols} and in particular the complexity classes $MA$ and $AM$ as randomized extensions of the class $NP$. While it is easy to see that $NP \subseteq MA \subseteq AM$, it has been a long standing open question whether these classes ... more >>>


TR17-023 | 15th February 2017
Russell Impagliazzo, Valentine Kabanets, Ilya Volkovich

The Power of Natural Properties as Oracles

We study the power of randomized complexity classes that are given oracle access to a natural property of Razborov and Rudich (JCSS, 1997) or its special case, the Minimal Circuit Size Problem (MCSP).
We obtain new circuit lower bounds, as well as some hardness results for the relativized version ... more >>>


TR16-171 | 3rd November 2016
Daniel Minahan, Ilya Volkovich

Complete Derandomization of Identity Testing and Reconstruction of Read-Once Formulas

In this paper we study the identity testing problem of \emph{arithmetic read-once formulas} (ROF) and some related models. A read-once formula is formula (a circuit whose underlying graph is a tree) in which the
operations are $\set{+,\times}$ and such that every input variable labels at most one leaf. We obtain ... more >>>


TR15-115 | 20th July 2015
Ilya Volkovich

A Guide to Learning Arithmetic Circuits

An \emph{arithmetic circuit} is a directed acyclic graph in which the operations are $\{+,\times\}$.
In this paper, we exhibit several connections between learning algorithms for arithmetic circuits and other problems.
In particular, we show that:

\begin{enumerate}
\item Efficient learning algorithms for arithmetic circuit classes imply explicit exponential lower bounds.

... more >>>

TR15-042 | 30th March 2015
Ilya Volkovich

Computations beyond Exponentiation Gates and Applications

In Arithmetic Circuit Complexity the standard operations are $\{+,\times\}$.
Yet, in some scenarios exponentiation gates are considered as well (see e.g. \cite{BshoutyBshouty98,ASSS12,Kayal12,KSS14}).
In this paper we study the question of efficiently evaluating a polynomial given an oracle access to its power.
That is, beyond an exponentiation gate. As ... more >>>


TR14-168 | 8th December 2014
Ilya Volkovich

Deterministically Factoring Sparse Polynomials into Multilinear Factors

We present the first efficient deterministic algorithm for factoring sparse polynomials that split into multilinear factors.
Our result makes partial progress towards the resolution of the classical question posed by von zur Gathen and Kaltofen in \cite{GathenKaltofen85} to devise an efficient deterministic algorithm for factoring (general) sparse polynomials.
We achieve ... more >>>


TR14-058 | 20th April 2014
Ilya Volkovich

On Learning, Lower Bounds and (un)Keeping Promises

We extend the line of research initiated by Fortnow and Klivans \cite{FortnowKlivans09} that studies the relationship between efficient learning algorithms and circuit lower bounds. In \cite{FortnowKlivans09}, it was shown that if a Boolean circuit class $\mathcal{C}$ has an efficient \emph{deterministic} exact learning algorithm, (i.e. an algorithm that uses membership and ... more >>>


TR11-046 | 2nd April 2011
Shubhangi Saraf, Ilya Volkovich

Black-Box Identity Testing of Depth-4 Multilinear Circuits

We study the problem of identity testing for multilinear $\Spsp(k)$ circuits, i.e. multilinear depth-$4$ circuits with fan-in $k$ at the top $+$ gate. We give the first polynomial-time deterministic
identity testing algorithm for such circuits. Our results also hold in the black-box setting.

The running time of our algorithm is ... more >>>


TR10-188 | 8th December 2010
Matthew Anderson, Dieter van Melkebeek, Ilya Volkovich

Derandomizing Polynomial Identity Testing for Multilinear Constant-Read Formulae

Revisions: 1

We present a polynomial-time deterministic algorithm for testing whether constant-read multilinear arithmetic formulae are identically zero. In such a formula each variable occurs only a constant number of times and each subformula computes a multilinear polynomial. Our algorithm runs in time $s^{O(1)}\cdot n^{k^{O(k)}}$, where $s$ denotes the size of the ... more >>>


TR10-036 | 8th March 2010
Amir Shpilka, Ilya Volkovich

On the Relation between Polynomial Identity Testing and Finding Variable Disjoint Factors

We say that a polynomial $f(x_1,\ldots,x_n)$ is {\em indecomposable} if it cannot be written as a product of two polynomials that are defined over disjoint sets of variables. The {\em polynomial decomposition} problem is defined to be the task of finding the indecomposable factors of a given polynomial. Note that ... more >>>


TR10-011 | 22nd January 2010
Amir Shpilka, Ilya Volkovich

Read-Once Polynomial Identity Testing

An \emph{arithmetic read-once formula} (ROF for short) is a
formula (a circuit whose underlying graph is a tree) in which the
operations are $\{+,\times\}$ and such that every input variable
labels at most one leaf. A \emph{preprocessed ROF} (PROF for
short) is a ROF in which we are allowed to ... more >>>


TR09-116 | 15th November 2009
Zohar Karnin, Partha Mukhopadhyay, Amir Shpilka, Ilya Volkovich

Deterministic identity testing of depth 4 multilinear circuits with bounded top fan-in

We give the first sub-exponential time deterministic polynomial
identity testing algorithm for depth-$4$ multilinear circuits with
a small top fan-in. More accurately, our algorithm works for
depth-$4$ circuits with a plus gate at the top (also known as
$\Spsp$ circuits) and has a running time of
$\exp(\poly(\log(n),\log(s),k))$ where $n$ is ... more >>>




ISSN 1433-8092 | Imprint