Research in the last decade has shown that to prove lower bounds or to derandomize polynomial identity testing (PIT) for general arithmetic circuits it suffices to solve these questions for restricted circuits. In this work, we study the smallest possibly restricted class of circuits, in particular depth-$4$ circuits, which would ... more >>>
We give a $n^{O(\log n)}$-time ($n$ is the input size) blackbox polynomial identity testing algorithm for unknown-order read-once oblivious algebraic branching programs (ROABP). The best time-complexity known for this class was $n^{O(\log^2 n)}$ due to Forbes-Saptharishi-Shpilka (STOC 2014), and that too only for multilinear ROABP. We get rid of their ... more >>>
In this paper, we propose a quantification of distributions on a set
of strings, in terms of how close to pseudorandom the distribution
is. The quantification is an adaptation of the theory of dimension of
sets of infinite sequences first introduced by Lutz
\cite{Lutz:DISS}.
We show that this definition ...
more >>>
The depth-$3$ model has recently gained much importance, as it has become a stepping-stone to understanding general arithmetic circuits. Its restriction to multilinearity has known exponential lower bounds but no nontrivial blackbox identity tests. In this paper we take a step towards designing such hitting-sets. We define a notion of ... more >>>
We call a depth-$4$ formula $C$ $\textit{ set-depth-4}$ if there exists a (unknown) partition $X_1\sqcup\cdots\sqcup X_d$ of the variable indices $[n]$ that the top product layer respects, i.e. $C(\mathbf{x})=\sum_{i=1}^k {\prod_{j=1}^{d} {f_{i,j}(\mathbf{x}_{X_j})}}$ $ ,$ where $f_{i,j}$ is a $\textit{sparse}$ polynomial in $\mathbb{F}[\mathbf{x}_{X_j}]$. Extending this definition to any depth - we call ... more >>>
We study the $\leadingones$ game, a Mastermind-type guessing game first
regarded as a test case in the complexity theory of randomized search
heuristics. The first player, Carole, secretly chooses a string $z \in \{0,1\}^n$ and a
permutation $\pi$ of $[n]$.
The goal of the second player, Paul, is to ...
more >>>
We present a single, common tool to strictly subsume all known cases of polynomial time blackbox polynomial identity testing (PIT) that have been hitherto solved using diverse tools and techniques. In particular, we show that polynomial time hitting-set generators for identity testing of the two seemingly different and well studied ... more >>>
We show that proving exponential lower bounds on depth four arithmetic
circuits imply exponential lower bounds for unrestricted depth arithmetic
circuits. In other words, for exponential sized circuits additional depth
beyond four does not help.
We then show that a complete black-box derandomization of Identity Testing problem for depth four ... more >>>
The perfect matching problem is known to
be in P, in randomized NC, and it is hard for NL.
Whether the perfect matching problem is in NC is one of
the most prominent open questions in complexity
theory regarding parallel computations.
Grigoriev and Karpinski studied the perfect matching problem
more >>>
We give new randomized algorithms for testing multivariate polynomial
identities over finite fields and rationals. The algorithms use
\lceil \sum_{i=1}^n \log(d_i+1)\rceil (plus \lceil\log\log C\rceil
in case of rationals where C is the largest coefficient)
random bits to test if a
polynomial P(x_1, ..., x_n) is zero where d_i is ...
more >>>
Motivated by the question of how to define an analog of interactive
proofs in the setting of logarithmic time- and space-bounded
computation, we study complexity classes defined in terms of
operators quantifying over oracles. We obtain new
characterizations of $\NCe$, $\L$, $\NL$, $\NP$, ...
more >>>
We show that the satisfiability problem for
bounded error probabilistic ordered branching programs is NP-complete.
If the error is very small however
(more precisely,
if the error is bounded by the reciprocal of the width of the branching program),
then we have a polynomial-time algorithm for the satisfiability problem.
more >>>
Continuing a line of investigation that has studied the
function classes #P, #SAC^1, #L, and #NC^1, we study the
class of functions #AC^0. One way to define #AC^0 is as the
class of functions computed by constant-depth polynomial-size
arithmetic circuits of unbounded fan-in addition ...
more >>>
We investigate the computational complexity of the Boolean Isomorphism problem (BI):
on input of two Boolean formulas F and G decide whether there exists a permutation of
the variables of G such that F and G become equivalent.
Our main result is a one-round interactive proof ... more >>>
We show that all sets complete for NC$^1$ under AC$^0$
reductions are isomorphic under AC$^0$-computable isomorphisms.
Although our proof does not generalize directly to other
complexity classes, we do show that, for all complexity classes C
closed under NC$^1$-computable many-one reductions, the sets ...
more >>>
The classes of languages accepted by nondeterministic polynomial-time
Turing machines (NP machines, in short) that have restricted access to
an NP oracle --- the machines can ask k queries to the NP oracle and
the answer they receive is the number of queries ...
more >>>