We show that given an embedding of an O(log n) genus bipartite graph, one can construct an edge weight function in logarithmic space, with respect to which the minimum weight perfect matching in the graph is unique, if one exists.
As a consequence, we obtain that deciding whether the ... more >>>
A catalytic Turing machine is a model of computation that is created by equipping a Turing machine with an additional auxiliary tape which is initially filled with arbitrary content; the machine can read or write on auxiliary tape during the computation but when it halts auxiliary tape’s initial content must ... more >>>
The catalytic Turing machine is a model of computation defined by Buhrman, Cleve,
Kouck, Loff, and Speelman (STOC 2014). Compared to the classical space-bounded Turing
machine, this model has an extra space which is filled with arbitrary content in addition
to the clean space. In such a model we study ...
more >>>
Given the polygonal schema embedding of an $O(log n)$ genus graph $G$ and two vertices
$s$ and $t$ in $G$, we show that deciding if there is a path from $s$ to $t$ in $G$ is in unambiguous
logarithmic space.
Recently, perfect matching in bounded planar cutwidth bipartite graphs
$BGGM$ was shown to be in ACC$^0$ by Hansen et al.. They also conjectured that
the problem is in AC$^0$.
In this paper, we disprove their conjecture by showing that the problem is
not in AC$^0[p^{\alpha}]$ for every prime $p$. ...
more >>>
Savitch showed in $1970$ that nondeterministic logspace (NL) is contained in deterministic $\mathcal{O}(\log^2 n)$ space but his algorithm requires quasipolynomial time. The question whether we can have a deterministic algorithm for every problem in NL that requires polylogarithmic space and simultaneously runs in polynomial time was left open.
...
more >>>
Given a graph $G$ and two vertices $s$ and $t$ in it, {\em graph reachability} is the problem of checking whether there exists a path from $s$ to $t$ in $G$. We show that reachability in directed layered planar graphs can be decided in polynomial time and $O(n^\epsilon)$ space, for ... more >>>
The perfect matching problem has a randomized $NC$ algorithm, using the celebrated Isolation Lemma of Mulmuley, Vazirani and Vazirani. The Isolation Lemma states that giving a random weight assignment to the edges of a graph, ensures that it has a unique minimum weight perfect matching, with a good probability. We ... more >>>
We obtain the following new simultaneous time-space upper bounds for the directed reachability problem.
(1) A polynomial-time,
$\tilde{O}(n^{2/3}g^{1/3})$-space algorithm for directed graphs embedded on orientable surfaces of genus $g$. (2) A polynomial-time, $\tilde{O}(n^{2/3})$-space algorithm for all $H$-minor-free graphs given the tree decomposition, and (3) for $K_{3, 3}$-free and ...
more >>>
We show that two complexity classes introduced about two decades ago are equal. ReachUL is the class of problems decided by nondeterministic log-space machines which on every input have at most one computation path from the start configuration to any other configuration. ReachFewL, a natural generalization of ReachUL, is the ... more >>>
We prove that Perfect Matching in bipartite planar graphs is in UL, improving upon
the previous bound of SPL (see [DKR10]) on its space complexity. We also exhibit space
complexity bounds for some related problems. Summarizing, we show that, constructing:
1. a Perfect Matching in bipartite planar graphs is in ...
more >>>
We show a simple application of Green’s theorem from multivariable calculus to the isolation problem in planar graphs. In particular, we construct a skew-symmetric, polynomially bounded, edge weight function for a directed planar graph in logspace such that the weight of any simple cycle in the graph is non-zero with ... more >>>
We investigate the space complexity of certain perfect matching
problems over bipartite graphs embedded on surfaces of constant genus
(orientable or non-orientable). We show that the problems of deciding
whether such graphs have (1) a perfect matching or not and (2) a
unique perfect matching or not, are in the ...
more >>>
We report progress on the \NL\ vs \UL\ problem.
\begin{itemize}
\item[-] We show unconditionally that the complexity class $\ReachFewL\subseteq\UL$. This improves on the earlier known upper bound $\ReachFewL \subseteq \FewL$.
\item[-] We investigate the complexity of min-uniqueness - a central
notion in studying the \NL\ vs \UL\ problem.
more >>>