Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > MICHAEL ELBERFELD:
All reports by Author Michael Elberfeld:

TR12-150 | 1st November 2012
Michael Elberfeld, Christoph Stockhusen, Till Tantau

On the Space Complexity of Parameterized Problems

Revisions: 1

Parameterized complexity theory measures the complexity of computational problems predominantly in terms of their parameterized time complexity. The purpose of the present paper is to demonstrate that the study of parameterized space complexity can give new insights into the complexity of well-studied parameterized problems like the feedback vertex set problem. ... more >>>


TR11-128 | 21st September 2011
Michael Elberfeld, Andreas Jakoby, Till Tantau

Algorithmic Meta Theorems for Circuit Classes of Constant and Logarithmic Depth

An algorithmic meta theorem for a logic and a class $C$ of structures states that all problems expressible in this logic can be solved efficiently for inputs from $C$. The prime example is Courcelle's Theorem, which states that monadic second-order (MSO) definable problems are linear-time solvable on graphs of bounded ... more >>>


TR10-062 | 7th April 2010
Michael Elberfeld, Andreas Jakoby, Till Tantau

Logspace Versions of the Theorems of Bodlaender and Courcelle

Bodlaender's Theorem states that for every $k$ there is a linear-time algorithm that decides whether an input graph has tree width~$k$ and, if so, computes a width-$k$ tree composition. Courcelle's Theorem builds on Bodlaender's Theorem and states that for every monadic second-order formula $\phi$ and for
every $k$ there is ... more >>>




ISSN 1433-8092 | Imprint