Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > ANDREI ROMASHCHENKO:
All reports by Author Andrei Romashchenko:

TR19-001 | 5th January 2019
Dmitry Itsykson, Alexander Knop, Andrei Romashchenko, Dmitry Sokolov

On OBDD-based algorithms and proof systems that dynamically change order of variables

In 2004 Atserias, Kolaitis and Vardi proposed OBDD-based propositional proof systems that prove unsatisfiability of a CNF formula by deduction of identically false OBDD from OBDDs representing clauses of the initial formula. All OBDDs in such proofs have the same order of variables. We initiate the study of OBDD based ... more >>>


TR18-043 | 22nd February 2018
Andrei Romashchenko, Marius Zimand

An operational characterization of mutual information in algorithmic information theory

Revisions: 2

We show that the mutual information, in the sense of Kolmogorov complexity, of any pair of strings
$x$ and $y$ is equal, up to logarithmic precision, to the length of the longest shared secret key that
two parties, one having $x$ and the complexity profile of the pair and the ... more >>>


TR08-030 | 16th November 2007
Bruno Durand, Alexander Shen, Andrei Romashchenko

Fixed Point and Aperiodic Tilings

An aperiodic tile set was first constructed by R.Berger while
proving the undecidability of the domino problem. It turned out
that aperiodic tile sets appear in many topics ranging from
logic (the Entscheidungsproblem) to physics (quasicrystals)

We present a new construction of an aperiodic tile set. The
flexibility of this ... more >>>


TR04-031 | 22nd March 2004
Troy Lee, Andrei Romashchenko

On Polynomially Time Bounded Symmetry of Information

The information contained in a string $x$ about a string $y$
is defined as the difference between the Kolmogorov complexity
of $y$ and the conditional Kolmogorov complexity of $y$ given $x$,
i.e., $I(x:y)=\C(y)-\C(y|x)$. From the well-known Kolmogorov--Levin Theorem it follows that $I(x:y)$ is symmetric up to a small ... more >>>


TR00-026 | 11th April 2000
Andrei Romashchenko, Alexander Shen, Nikolay Vereshchagin

Combinatorial Interpretation of Kolmogorov Complexity

The very first Kolmogorov's paper on algorithmic
information theory was entitled `Three approaches to the
definition of the quantity of information'. These three
approaches were called combinatorial, probabilistic and
algorithmic. Trying to establish formal connections
between combinatorial and algorithmic approaches, we
prove that any ... more >>>




ISSN 1433-8092 | Imprint