Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > RAGHU MEKA:
All reports by Author Raghu Meka:

TR18-112 | 5th June 2018
Raghu Meka, Omer Reingold, Avishay Tal

Pseudorandom Generators for Width-3 Branching Programs

Revisions: 1

We construct pseudorandom generators of seed length $\tilde{O}(\log(n)\cdot \log(1/\epsilon))$ that $\epsilon$-fool ordered read-once branching programs (ROBPs) of width $3$ and length $n$. For unordered ROBPs, we construct pseudorandom generators with seed length $\tilde{O}(\log(n) \cdot \mathrm{poly}(1/\epsilon))$. This is the first improvement for pseudorandom generators fooling width $3$ ROBPs since the work ... more >>>


TR15-144 | 1st September 2015
Raghu Meka

Explicit resilient functions matching Ajtai-Linial

Revisions: 1

A Boolean function on n variables is q-resilient if for any subset of at most q variables, the function is very likely to be determined by a uniformly random assignment to the remaining n-q variables; in other words, no coalition of at most q variables has significant influence on the ... more >>>


TR14-153 | 14th November 2014
Clement Canonne, Venkatesan Guruswami, Raghu Meka, Madhu Sudan

Communication with Imperfectly Shared Randomness

Revisions: 2

The communication complexity of many fundamental problems reduces greatly
when the communicating parties share randomness that is independent of the
inputs to the communication task. Natural communication processes (say between
humans) however often involve large amounts of shared correlations among the
communicating players, but rarely allow for perfect sharing of ... more >>>


TR14-147 | 6th November 2014
Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, David Zuckerman

Rectangles Are Nonnegative Juntas

Revisions: 1

We develop a new method to prove communication lower bounds for composed functions of the form $f\circ g^n$ where $f$ is any boolean function on $n$ inputs and $g$ is a sufficiently ``hard'' two-party gadget. Our main structure theorem states that each rectangle in the communication matrix of $f \circ ... more >>>


TR13-105 | 29th July 2013
Raghu Meka, Avi Wigderson

Association schemes, non-commutative polynomial concentration, and sum-of-squares lower bounds for planted clique

Revisions: 1

Finding cliques in random graphs and the closely related ``planted'' clique variant, where a clique of size t is planted in a random G(n,1/2) graph, have been the focus of substantial study in algorithm design. Despite much effort, the best known polynomial-time algorithms only solve the problem for t = ... more >>>


TR13-008 | 7th January 2013
Adam Klivans, Raghu Meka

Moment-Matching Polynomials

We give a new framework for proving the existence of low-degree, polynomial approximators for Boolean functions with respect to broad classes of non-product distributions. Our proofs use techniques related to the classical moment problem and deviate significantly from known Fourier-based methods, which require the underlying distribution to have some product ... more >>>


TR12-123 | 28th September 2012
Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, Salil Vadhan

Better pseudorandom generators from milder pseudorandom restrictions

We present an iterative approach to constructing pseudorandom generators, based on the repeated application of mild pseudorandom restrictions. We use this template to construct pseudorandom generators for combinatorial rectangles and read-once CNFs and a hitting set generator for width-3 branching programs, all of which achieve near optimal seed-length even in ... more >>>


TR12-060 | 16th May 2012
Parikshit Gopalan, Raghu Meka, Omer Reingold

DNF Sparsification and a Faster Deterministic Counting

Revisions: 2

Given a DNF formula $f$ on $n$ variables, the two natural size measures are the number of terms or size $s(f)$, and the maximum width of a term $w(f)$. It is folklore that short DNF formulas can be made narrow. We prove a converse, showing that narrow formulas can be ... more >>>


TR12-057 | 7th May 2012
Russell Impagliazzo, Raghu Meka, David Zuckerman

Pseudorandomness from Shrinkage

Revisions: 2

One powerful theme in complexity theory and pseudorandomness in the past few decades has been the use of lower bounds to give pseudorandom generators (PRGs). However, the general results using this hardness vs. randomness paradigm suffer a quantitative loss in parameters, and hence do not give nontrivial implications for models ... more >>>


TR11-142 | 2nd November 2011
Boaz Barak, Parikshit Gopalan, Johan Hastad, Raghu Meka, Prasad Raghavendra, David Steurer

Making the long code shorter, with applications to the Unique Games Conjecture

Revisions: 1

The long code is a central tool in hardness of approximation, especially in
questions related to the unique games conjecture. We construct a new code that
is exponentially more ecient, but can still be used in many of these applications.
Using the new code we obtain exponential improvements over several ... more >>>


TR10-183 | 29th November 2010
Raghu Meka

Almost Optimal Explicit Johnson-Lindenstrauss Transformations

Revisions: 2

The Johnson-Lindenstrauss lemma is a fundamental result in probability with several applications in the design and analysis of algorithms in high dimensional geometry. Most known constructions of linear embeddings that satisfy the Johnson-Lindenstrauss property involve randomness. We address the question of explicitly constructing such embedding families and provide a construction ... more >>>


TR10-176 | 15th November 2010
Parikshit Gopalan, Raghu Meka, Omer Reingold, David Zuckerman

Pseudorandom Generators for Combinatorial Shapes

Revisions: 1

We construct pseudorandom generators for combinatorial shapes, which substantially generalize combinatorial rectangles, small-bias spaces, 0/1 halfspaces, and 0/1 modular sums. A function $f:[m]^n \rightarrow \{0,1\}^n$ is an $(m,n)$-combinatorial shape if there exist sets $A_1,\ldots,A_n \subseteq [m]$ and a symmetric function $h:\{0,1\}^n \rightarrow \{0,1\}$ such that $f(x_1,\ldots,x_n) = h(1_{A_1} (x_1),\ldots,1_{A_n}(x_n))$. Our ... more >>>


TR10-133 | 20th August 2010
Parikshit Gopalan, Adam Klivans, Raghu Meka

Polynomial-Time Approximation Schemes for Knapsack and Related Counting Problems using Branching Programs

We give a deterministic, polynomial-time algorithm for approximately counting the number of {0,1}-solutions to any instance of the knapsack problem. On an instance of length n with total weight W and accuracy parameter eps, our algorithm produces a (1 + eps)-multiplicative approximation in time poly(n,log W,1/eps). We also give algorithms ... more >>>


TR09-144 | 24th December 2009
Prahladh Harsha, Adam Klivans, Raghu Meka

An Invariance Principle for Polytopes

Let $X$ be randomly chosen from $\{-1,1\}^n$, and let $Y$ be randomly
chosen from the standard spherical Gaussian on $\R^n$. For any (possibly unbounded) polytope $P$
formed by the intersection of $k$ halfspaces, we prove that
$$\left|\Pr\left[X \in P\right] - \Pr\left[Y \in P\right]\right| \leq \log^{8/5}k ... more >>>




ISSN 1433-8092 | Imprint